首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was undertaken to determine the endothelial factors involved in the flow-induced dilation of a rat perfused coronary artery. Segments of the right interventricular coronary artery were taken from 10–15-week-old male Wistar rats. Vessels were mounted in an arteriograph where internal diameter was continuously monitored while intraluminal pressure was controlled. Vessels were preconstricted with serotonin (10 mol/L), and the dilation induced by flow (0–800 l/min) was quantified. This dilator effect was measured in control conditions, after incubation with L-NAME (100 mol/L), with indomethacin (100µmol/L), and after mechanical destruction of the endothelium (–E). Dilations were expressed as percentage of the serotonin-induced constriction, and wall shear stress due to the physical forces exerted on the wall of the vessel was calculated and expressed in dyn/cm2.In control conditions, raising the flow up to 800 l/min led to an increase in dilation (maximal dilation 63% ± 4%) and in sheer stress (maximal shear stress 76 ±4dyn/cm2). With indomethacin, maximal dilation was 69% ± 4% and maximal shear stress was 81 ± 6 dyn/cm2. With L-NAME or after destruction of endothelium, dilation was greatly reduced (39% ± 3% and 40% ± 2%, respectively) whereas shear stress values were greatly increased (173 ± 14 and 150 ± 13 dyn/cm2, respectively).These results confirm the viability of this model for the study of flow-dependent dilation. This dilation seems to be greatly dependent on NO release. In contrast, results do not favor a significant involvement of prostanoid vasodilating substance. Without endothelium, a dilation was still observed and showed the persistence of an endothelium-independent component of flow-induced dilation in this preparation that remains to be determined.Abbreviations Ach acetylcholine - BSA bovine serum albumin - EDRF endothelium-derived relaxing factor - EDHF endothelium-derived hyperpolarizing factor - L-NAME N -nitro-L-arginine-methyl ester - NO nitric oxide - PSS physiological salt solution - PGI2 prostacyclin - 5-HT serotonin - SNP sodium nitroprusside - TXA2 thromboxane A2  相似文献   

2.
The intracellular mechanisms underlying the action of the endogenous vasodilators such as NO/EDRF, adenosine, and prostacyclin acting through cGMP and cAMP, respectively, are not well understood. One important action of cyclic nucleotides in smooth muscle relaxation is to lower the cytosolic Ca2+ concentration by enhanced sequestration into the sarcoplasmic reticulum. The present study was undertaken to elucidate the potential role of phosphorylation of phospholamban, the regulator of sarcoplasmic reticulum Ca2+ pump, for the control of coronary vascular tone by NO/EDRF, adenosine, and prostacyclin. Phospholamban was identified in pig coronary artery preparations by immunofluorescence microscopy, Western blotting and in vitro phosphorylation. Segments of pig coronary artery, with either intact or denuded endothelium, were precontracted with prostaglandin F2α (PGF2α). In endothelium-denuded preparations 3-morpholinosydnonimine (SIN-1), 5′-N-ethylcarboxiamidoadenosine (NECA), and iloprost (ILO) caused both relaxation and phospholamban phosphorylation with the potency: SIN-1 > NECA > ILO. The regulatory myosin light chain was significantly dephosphorylated only by SIN-1. In endothelium-intact pig coronary artery, L-NAME caused additional vasoconstriction and a decrease in phospholamban phosphorylation, while phosphorylation of myosin light chain remained unchanged. An inverse relationship between phospholamban phosphorylation and vessel tone was obtained. Our findings demonstrate significant phospholamban phosphorylation during coronary artery relaxation evoked by NO, prostacyclin, and adenosine receptor activation. Because of the close correlation between phosphorylation of phospholamban and vessel relaxation, we propose that phospholamban phosphorylation is an important mechanism by which endogenous vasodilators, especially endothelial NO/EDRF, control coronary vascular smooth muscle tone. J. Cell. Biochem. 70:49–59, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
The perfused central artery of the rabbit ear was less sensitive to extraluminal than to intraluminal noradrenaline, but the reverse was true for metaraminol, methoxamine, metanephrine, and isoproterenol. No difference was noted between the extraluminal and intraluminal potency of phenylephrine. Cocaine potentiated the effect of extraluminal and intraluminal noradrenaline, but decreased that of intraluminal phenylephrine. Irrespective of the route of administration, the constrictor potencies of the sympathomimetic amines were not affected by cocaine. Arteries of reserpine-treated rabbits were supersensitive to extraluminally and intraluminally applied noradrenaline and phenylephrine, but they were not supersensitive to metaraminol. 6-Hydroxydopamine effectively destroyed adrenergic nerve endings of the central ear artery and increased its responses to both extraluminal and intraluminal noradrenaline and phenylephrine. However, only the constrictor potencies of intraluminally applied metaraminol and methoxamine were enhanced by 6-hydroxydopamine. The apparent discrepancies between the results obtained by various procedures that eliminate or impair the nerve uptake process suggest that the difference in the constrictor potency of extraluminal and intraluminal sympathomimetic amines is probably unrelated to their uptake by nerves located in the adventitio-medial junction of the artery.  相似文献   

4.
Prostacyclin (PGI2) produced a biphasic response in canine isolated basilar arteries. In low doses (1 × 10?8M?1 × 10?7M) PGI2 caused a slight but consistent relaxation of resting muscle tone. In low concentrations (1 × 10?8M?1 × 10?6M) PGI2 antagonized muscle contractions caused by serotonin or prostaglandin (PG) F. This relaxant effect with low doses of PGI2 on the isolated cerebral artery contrasts with findings obtained with other PGs and supports the hypothesis that PGI2 is a mediator of vasodilatation. However, in 1 × 10?5M concentrations PGI2 contracted the arterial muscle and did not antagonize contractions induced by serotonin or PGF.  相似文献   

5.
The substrate specificity of the rat mammary tissue high affinity, Na+-dependent anionic amino acid transport system has been investigated using explants and the perfused mammary gland. d-Aspartate appears to be transported via the high affinity, Na+-dependent l-glutamate carrier. Thus, d-aspartate transport by rat mammary tissue was Na+-dependent and saturable with respect to extracellular d-aspartate with a Km and Vmax of 32.4 μM and 49.0 nmol/2 min per g of cells respectively. The uptake of d-aspartate by mammary explants was cis-inhibited by l-glutamate and l-aspartate, but not by d-glutamate. l-glutamate uptake by mammary tissue explants was cis-inhibited by β-glutamate, l-cysteate, l-cysteine sulfinate and dihydrokainate but not by dl-α-aminoadipate. In addition, dihydrokainate, but not dl-α-aminoadipate inhibited d-aspartate and l-glutamate uptake by the perfused gland. d-Aspartate efflux from mammary tissue explants was trans-accelerated by external l-glutamate in a dose-dependent fashion (50-500 μM). The effect of l-glutamate on d-aspartate efflux was dependent on the presence of extracellular Na+. d-Aspartate, l-aspartate and l-cysteine sulfinate (at 500 μM) also markedly trans-stimulated d-aspartate efflux from mammary tissue explants. In contrast, l-cysteine, d-glutamate, l-leucine, dihydrokainate and dl-α-aminoadipate were either weak stimulators of d-aspartate efflux or were without effect. d-Aspartate efflux from the perfused mammary gland was trans-stimulated by l-glutamate but not by d-glutamate and only weakly by l-cysteine (all at 500 μM). It appears that the mammary tissue high affinity anionic amino acid carrier can operate in the exchange mode with a similar substrate specificity to that of the co-transport mode.  相似文献   

6.

Background

Statins (3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors) consumption provides beneficial effects on cardiovascular systems. However, effects of statins on vascular KATP channel gatings are unknown.

Methods

Pig left anterior descending coronary artery and human left internal mammary artery were isolated and endothelium-denuded for tension measurements and Western immunoblots. Enzymatically-dissociated/cultured arterial myocytes were used for patch-clamp electrophysiological studies and for [Ca2+]i, [ATP]i and [glucose]o uptake measurements.

Results

The cromakalim (10 nM to 10 µM)- and pinacidil (10 nM to 10 µM)-induced concentration-dependent relaxation of porcine coronary artery was inhibited by simvastatin (3 and 10 µM). Simvastatin (1, 3 and 10 µM) suppressed (in okadaic acid (10 nM)-sensitive manner) cromakalim (10 µM)- and pinacidil (10 µM)-mediated opening of whole-cell KATP channels of arterial myocytes. Simvastatin (10 µM) and AICAR (1 mM) elicited a time-dependent, compound C (1 µM)-sensitive [3H]-2-deoxy-glucose uptake and an increase in [ATP]i levels. A time (2–30 min)- and concentration (0.1–10 µM)-dependent increase by simvastatin of p-AMPKα-Thr172 and p-PP2A-Tyr307 expression was observed. The enhanced p-AMPKα-Thr172 expression was inhibited by compound C, ryanodine (100 µM) and KN93 (10 µM). Simvastatin-induced p-PP2A-Tyr307 expression was suppressed by okadaic acid, compound C, ryanodine, KN93, phloridzin (1 mM), ouabain (10 µM), and in [glucose]o-free or [Na+]o-free conditions.

Conclusions

Simvastatin causes ryanodine-sensitive Ca2+ release which is important for AMPKα-Thr172 phosphorylation via Ca2+/CaMK II. AMPKα-Thr172 phosphorylation causes [glucose]o uptake (and an [ATP]i increase), closure of KATP channels, and phosphorylation of AMPKα-Thr172 and PP2A-Tyr307 resulted. Phosphorylation of PP2A-Tyr307 occurs at a site downstream of AMPKα-Thr172 phosphorylation.  相似文献   

7.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

8.
Canine basilar artery rings precontracted with 5-hydroxytryptamine (0.1-0.5 microM) relaxed in the presence of acetylcholine (25-100 microM), sodium nitroprusside (0.1 microM), or stimulation of the electrogenic sodium pump by restoration of extracellular K+ (4.5 mM) after K(+)-deprivation. Acetylcholine-induced relaxation is believed to be caused by the release of endothelium-derived relaxing factor (EDRF) and is prevented by mechanical removal of the endothelium, while relaxations induced by sodium nitroprusside or restarting of the sodium pump are endothelium-independent. Acetylcholine-induced relaxation was selectively blocked by pretreatment of the tissue with the nonselective K+ conductance inhibitors, 4-aminopyridine (4-AP, 3 mM), Ba2+ (1 mM), and tetraethylammonium (20 mM), 4-AP also blocked ACh-mediated relaxation in muscles contracted with elevated external K+. Relaxation of 5-hydroxytryptamine-induced contraction by sodium nitroprusside, or by addition of K+ to K(+)-deprived muscle, was not affected by 4-AP. Relaxation of basilar artery with acidified sodium nitrite solution (containing nitric oxide) was reduced by 4-AP. These results suggest that 4-AP and possibly Ba2+ inhibit acetylcholine-induced endothelium-dependent relaxation by inhibition of the action of EDRF on the smooth muscle rather than through inhibition of release of EDRF. The increase in K+ conductance involved in acetylcholine-induced relaxation is not due to ATP-inhibited K+ channels, as it is not blocked by glyburide (10(-6) M). Endothelium-derived relaxant factor(s) may relax smooth muscle by mode(s) of action different from that of sodium nitroprusside or by hyperpolarization due to the electrogenic sodium pumping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effects of prostaglandins (PGs) E1, E2, F and I2 in a wide range of concentration were examined in mesenteric and cerebral arteries isolated from mature baboons. PGs E1, E2 and F at low concentrations (10−10 to 10−7 M) elicited relaxation in helically cut strips of cerebral arteries precontracted with phenylephrine. In contrast, the PGs did not cause relaxation in the mesentric artery. PGI2 (10−9 to 10−6 M) produced marked relaxation in both arteries. The EC25 for PGI2 in the mesenteric artery was significantly lower than that in the cerebral artery. During baseline conditions, cerebral arteries contracted in response to high concentrations (greater than 10−7 M) of PGs E1, E2 and F. In mesentric arteries, a large contraction was induced by PGs F and E2 but not by PGE1. Arachidonic acid (10−6 M) produced an aspirin-inhibitable relaxation in both arteries to a similar extent, so that the vasodilator PG(s) formed in the two different arterial walls appear to exert a similar relaxant action. Thus, the baboon mesenteric artery was more sensitive to PGI2 for the relaxant effect than was the cerebral artery, while PGs F, E1 and E2 caused only a contraction in the mesenteric artery but both relaxation and contraction in the cerebral artery.  相似文献   

10.
Synthetic leukotrienes (LT) C4 and D4 elicited concentration-dependent contractions of the guinea pig uterus between 10?8-10?6M, whereas LTE4 appeared 1000-fold weaker. The potencies of LTC4 and LTD4 were similar to that of acetylcholine and PGF but weaker than that of PGE2. The maximal contractions elicited by LTC4 and LTD4 were 66.0 ± 2.1% and 63.8 ± 4.6% that elicited by acetylcholine. FPL 55712 (10?5M) antagonized the uterine contractile activity of LTD4, while meclofenamic acid at 10?5M but not at 10?6M also antagonized the LTD4-induced contration. Radioimmunoassay of the uterine tissue bathing fluid following LTD4 indicated the variable presence of low concentrations of PGE2, PGF and TXB2. These results demonstrate the LTC4 and LTD4 possess significant uterine contractile activity, which may only partially be mediated indirectly via prostaglandin products.  相似文献   

11.
Conditioned medium was collected from vascular smooth-muscle cells grown in culture to determine if these cells synthesize vasoactive substances. The medium caused a short-acting endothelium-independent constriction of rat aorta, followed by a prolonged, endothelium-dependent relaxation. This relaxation was mediated through the release of endothelium-derived relaxing factor (EDRF) as it was abolished by the addition of methylene blue (5 x 10(-6) M), haemoglobin (10(-6) M) or methyl arginine, but was not affected by indomethacin (10(-5) M). Smooth-muscle medium stimulated the production of EDRF from both rat and rabbit thoracic aortic rings as well as from cultured bovine pulmonary artery endothelial cells. The prolonged stimulation of EDRF by smooth-muscle medium was not mimicked by known physiological stimuli to EDRF release; EDRF-stimulating activity was not affected when smooth-muscle cells were grown in the presence of indomethacin (10(-5) M), although serum in the medium was required. The EDRF-stimulating substance(s) in the smooth-muscle medium was heat stable and associated with a high molecular mass (30,000 greater than Mr greater than 3500) water-soluble species that is as yet unidentified.  相似文献   

12.
Prostacyclin was tested on human umbilical artery obtained after spontaneous delivery or by Cesarean section. Isometric and isotonic responses were measured on spiral preparations in Krebs-bicarbonate buffer at 37°C equilibrated with 95% O2 and 5% CO2. Spiral artery strips, whether superfused or mounted in organ baths isometrically or isotonically, responded in a dose-dependent manner to both prostacyclin and serotonin; the PGI2 response was biphasic in that low doses (2.5 × 10-8 M - 1.0 × 10-6 M) elicited a dose-dependent relaxation which changed with higher concentrations (1.0 × 10-6 M - 2.53 × 105 M) to a contractile response. The maximum tension exerte was 50% less than that elicited by serotonin. The data indicate that the human umbilical artery is responsive to prostacyclin and may be involved in the regulation of fetal placenta blood flow.  相似文献   

13.
Progesterone and 17β-estradiol induce vasorelaxation through non-genomic mechanisms in several isolated blood vessels; however, no study has systematically evaluated the mechanisms involved in the relaxation induced by 17β-estradiol and progesterone in the canine basilar and internal carotid arteries that play a key role in cerebral circulation. Thus, relaxant effects of progesterone and 17β-estradiol on KCl- and/or PGF-pre-contracted arterial rings were investigated in absence or presence of several antagonists/inhibitors/blockers; the effect on the contractile responses to CaCl2 was also determined. In both arteries progesterone (5.6–180 μM) and 17β-estradiol (1.8–180 μM): (1) produced concentration-dependent relaxations of KCl- or PGF-pre-contracted arterial rings; (2) the relaxations were unaffected by actinomycin D (10 μM), cycloheximide (10 μM), SQ 22,536 (100 μM) or ODQ (30 μM), potassium channel blockers and ICI 182,780 (only for 17β-estradiol). In the basilar artery the vasorelaxation induced by 17β-estradiol was slightly blocked by tetraethylammonium (10 mM) and glibenclamide (KATP; 10 μM). In both arteries, progesterone (10–100 μM), 17β-estradiol (3.1–31 μM) and nifedipine (0.01–1 μM) produced a concentration-dependent blockade of the contraction to CaCl2 (10 μM–10 mM). These results suggest that progesterone and 17β-estradiol produced relaxation in the basilar and internal carotid arteries by blockade of L-type voltage dependent Ca2+ channel but not by genomic mechanisms or production of cAMP/cGMP. Potassium channels did not play a role in the relaxation to progesterone in both arteries or in the effect of 17β-estradiol in the internal carotid artery; meanwhile KATP channels play a minor role on the effect of 17β-estradiol in the basilar artery.  相似文献   

14.
To assess the effect of endothelium-derived relaxing factor (EDRF) on diaphragmatic vascular resistance at rest and during contractions, we studied an in situ isolated diaphragm preparation in anesthetized and mechanically ventilated dogs. The arterial supply of the left diaphragm (phrenic artery) was catheterized and perfused with arterial blood at a fixed flow rate. Drugs were infused through a side port of the arterial catheter at 1/100th of the phrenic arterial flow. The inferior phrenic vein was catheterized to complete the isolation from the systemic circulation. Three sets of experiments were performed. In set 1 (n = 3), we infused endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) dilators at increasing concentrations. ACh and SNP infusion elicited a dose-dependent decline in phrenic vascular resistance (Rphr) at concentrations greater than 10(-8) M and 0.50 micrograms/ml, respectively. In set 2 (n = 15), we infused an inhibitor of EDRF synthesis and release, L-argininosuccinic acid (ArgSA), at increasing concentrations (10(-4), 3 x 10(-4), and 6 x 10(-4) M). ArgSA produced a dose-dependent increase in Rphr. Infusion of another EDRF inhibitor (NG-nitro-L-arginine, LNA, 6 x 10(-4) M) elicited increase in Rphr similar to that induced by ArgSA. In set 3 (n = 25), we infused ArgSA or LNA (6 x 10(-4) M) simultaneously with ACh and SNP and during sustained (2-Hz) contractions of the diaphragm. Both ArgSA and LNA completely reversed ACh vasodilation, whereas SNP vasodilation was reversed by 26 and 11%, respectively. ArgSA or LNA infusion during contractions reversed vasodilation by 48 and 52%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M) to isolated hepatocytes stimulated glycogen accumulation and this stimulation was more pronounced when the medium glucose was raised from 50 to 300 mg percent. Studies with [14C]-glucose showed a two-fold stimulation in glycogen synthesis by the addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M). A sixteen percent increase in the activity of glycogen synthase was observed in cells incubated for 10 minutes with insulin (4.0 × 10?11 M) or acetylcholine (10?6 M), whereas at one hour incubation a 40 percent increase in activity was observed with the same concentration of insulin or acetylcholine. The effects of insulin and acetylcholine were not additive.  相似文献   

16.
12-Aza-prostaglandin (PG) analogues containing the pyrrolidine-2,4-dione ring system have been synthesized from ,2-disubstituted glycine esters via cyclisation of their -ethoxycarbonylacetyl derivatives. 5-(6-Carboxyhexyl)-1-octylpyrrolidine-2,4-dione (5) had little or no PG-like activity on superfused intestinal or vascular smooth muscle preparations but it selectively antagonised smooth muscle responses to PGE2, PGE1, PGF and PGA2in vitro. At a concentration of 10−5 g/ml it reduced responses of the rat stomach strip to PGE2 by over 80% but did not affect responses of this tissue to acetylcholine, 5-hydroxytryptamine (5-HT) or bradykinin. Polyphloretin phosphate (PPP), the known PG antagonist, had a similar effect at the same concentration (10−5 g/ml).5-(6-Carboxyhexyl)-1-(3-hydroxyoctyl)pyrrolidine-2,4-dione (12) had the same profile of activity on superfused smooth muscle preparations as PGE2 or PGA2. On intravenous injection into anaesthetised rats it caused dose-dependent falls in arterial blood pressure with associated tachycardias, which is typical of the response to PGE2. The smooth muscle activity of (12) was not reduced by passage through isolated perfused guinea-pig lungs nor was its potency as a vasodepressor increased when given intra-arterially to rats. These results suggest that, unlike PGE2, this analogue is not removed by the pulmonary circulation.  相似文献   

17.
A cDNA clone (GenBank Accession No. AY835398) encoding a sesquiterpene synthase, (E)-β-farnesene synthase, has been isolated from Artemisia annua L. It contains a 1746-bp open reading frame coding for 574 amino acids (66.9 kDa) with a calculated pI = 5.03. The deduced amino acid sequence is 30-50% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a single product, β-farnesene, from farnesyl diphosphate. The pH optimum for the recombinant enzyme is around 6.5 and the Km- and kcat-values for farnesyl diphosphate, is 2.1 μM and 9.5 × 10−3 s−1, respectively resulting in the efficiency 4.5 × 10−3 M−1 s−1. The enzyme exhibits substantial activity in the presence of Mg2+, Mn2+ or Co2+ but essentially no activity when Zn2+, Ni2+ or Cu2+ is used as cofactor. The concentration required for maximum activity are estimated to 5 mM, 0.5 mM and <10 μM for Mg2+, Co2+ or Mn2+, respectively. Geranyl diphosphate is not a substrate for the recombinant enzyme.  相似文献   

18.
Effect of synthetic auxins on callus induction from tea stem tissue   总被引:1,自引:0,他引:1  
A study was initiated to establish an in vitro culture protocol for tea (Camellia sinensis). Explant sources, disinfestation methods and culture media were examined. Segments (divots) were dissected from greenwood stem (current year growth) internodes of field grown plants. Disinfestation was achieved by separate treatments of 3.75% sodium hypochlorite and 7.5% CaCl2. MS medium with sucrose (30 g/L), inositol (100 mg/L) and thiamine-HCl (1.3 mg/L) and kinetin was used with combinations of the auxins: (2,4-dichlorophenoxy) acetic acid (2,4-D), (2,4,5-trichlorophenoxy) acetic acid (2,4,5-T), (naphthalene) acetic acid (NAA) and 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram). Picloram (10-7M) induced the most callus proliferation without kinetin. At a constant level of kinetin (10-5M), the concentrations inducing the most callus growth were 10-7M for 2,4-D, 10-6M for 2,4,5-T, 10-7M for Picloram and 10-8M for NAA. A factorial test of 2,4,5-T and kinetin concentrations showed the optimum for callus growth was 10-7M and 10-5M, respectively.Technical Contribution No. 2532 of the South Carolina Agricultural Experiment Station, Clemson University.Graduate Research Assistant and Professor, respectively.  相似文献   

19.
The action of acetylcholine on the horizontal cells of the goldfish retina and the electro-retinogram of the frog was studied. Acetylcholine in concentrations of 1·10−9–1·10−3 M depolarized these cells. The maximal level of depolarization never reached zero level of the membrane potential and was about equal to the membrane potential in darkness. In a concentration of 1·10−2–5·10−2 M acetylcholine suppressed the b- and d-waves of the frog electro-retinogram, and as a result the stable PIII component was isolated from the ERG. A mediator role is ascribed to acetylcholine in the synapses of the outer plexiform layer.  相似文献   

20.
Cultured bovine endothelial cells were seeded onto the intimal surface of endothelium-denuded rings of canine coronary artery. These rings did not previously relax to acetylcholine, substance P, bradykinin, and A23187. After seeding, the same rings relaxed to bradykinin and A23187, but not to acetycholine or substance P. Indomethacin pretreatment did not affect these responses. Cells from the same source were then grown to confluence on microcarrier beads, poured into small columns, and perfused with Krebs' solution. The perfusate from the columns was bioassayed on endothelium-denuded rings of coronary artery from either the dog or pig. Challenge of the column in the presence of indomethacin with either bradykinin or A23187 as well as acetylcholine or substance P caused release of a substance that relaxed both types of artery. Its activity half-life was 6.4 +/- 0.4 sec at 37 degrees C and it was hydrophilic and negatively charged. Prostacyclin (PGI2) as a candidate for EDRF was ruled out because 1) indomethacin failed to block its release and 2) the pig coronary artery, although insensitive to PGI2, relaxed to the endothelium-derived substance. These results show that, in response to a number of dilator drugs, cultured endothelial cells release a vascular relaxing substance (EDRF) that has characteristics similar to the EDRF of normal endothelium. The chemical nature of EDRF awaits clarification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号