首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
CIB1 is a 22-kDa calcium binding, regulatory protein with approximately 50% homology to calmodulin and calcineurin B. CIB1 is widely expressed and binds to a number of effectors, such as integrin alphaIIb, PAK1, and polo-like kinases, in different tissues. However, the in vivo functions of CIB1 are not well understood. To elucidate the function of CIB1 in whole animals, we used homologous recombination in embryonic stem cells to generate Cib1(-/-) mice. Although Cib1(-/-) mice grow normally, the males are sterile due to disruption of the haploid phase of spermatogenesis. This is associated with reduced testis size and numbers of germ cells in seminiferous tubules, increased germ cell apoptosis, and the loss of elongated spermatids and sperm. Cib1(-/-) testes also show increased mRNA and protein expression of the cell cycle regulator Cdc2/Cdk1. In addition, mouse embryonic fibroblasts (MEFs) derived from Cib1(-/-) mice exhibit a much slower growth rate compared to Cib1(+/+) MEFs, suggesting that CIB1 regulates the cell cycle, differentiation of spermatogenic germ cells, and/or differentiation of supporting Sertoli cells.  相似文献   

6.
Karasu  Mehmet E.  Keeney  Scott 《Chromosoma》2019,128(3):473-487
Chromosoma - Cyclins, as regulatory partners of cyclin-dependent kinases (CDKs), control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes....  相似文献   

7.
RanBPM is a recently identified scaffold protein that links and modulates interactions between cell surface receptors and their intracellular signaling pathways. RanBPM has been shown to interact with a variety of functionally unrelated proteins; however, its function remains unclear. Here, we show that RanBPM is essential for normal gonad development as both male and female RanBPM(-/-) mice are sterile. In the mutant testis there was a marked decrease in spermatogonia proliferation during postnatal development. Strikingly, the first wave of spermatogenesis was totally compromised, as seminiferous tubules of homozygous mutant animals were devoid of post-meiotic germ cells. We determined that spermatogenesis was arrested around the late pachytene-diplotene stages of prophase I; surprisingly, without any obvious defect in chromosome synapsis. Interestingly, RanBPM deletion led to a remarkably quick disappearance of all germ cell types at around one month of age, suggesting that spermatogonia stem cells are also affected by the mutation. Moreover, in chimeric mice generated with RanBPM(-/-) embryonic stem cells all mutant germ cells disappeared by 3 weeks of age suggesting that RanBPM is acting in a cell-autonomous way in germ cells. RanBPM homozygous mutant females displayed a premature ovarian failure due to a depletion of the germ cell pool at the end of prophase I, as in males. Taken together, our results highlight a crucial role for RanBPM in mammalian gametogenesis in both genders.  相似文献   

8.
Basonuclin (BNC1) is a zinc finger protein expressed primarily in gametogenic cells and proliferative keratinocytes. Our previous work suggested that BNC1 is present in spermatogonia, spermatocytes, and spermatids, but absent in the Sertoli cells. BNC1's role in spermatogenesis is unknown. Here, we show that BNC1 is required for the maintenance of spermatogenesis. Bnc1-null male mice were sub-fertile, losing germ cells progressively with age. The Bnc1-null seminiferous epithelia began to degenerate before 8 weeks of age and eventually became Sertoli cell-only. Sperm count and motility also declined with age. Furthermore, Bnc1 heterozygotes, although fertile, showed a significant drop in sperm count and in testis weight by 24 weeks of age, suggesting a dosage effect of Bnc1 on testis development. In conclusion, our data demonstrate for the first time BNC1's essential role in maintaining mouse spermatogenesis.  相似文献   

9.
10.
R E Braun 《Enzyme》1990,44(1-4):120-128
Temporal translational control is an important mechanism of gene regulation during mouse spermatogenesis. Studies of the protamine 1 gene, one member of a class of translationally regulated genes, have shown that it is first transcribed post-meiotically in round spermatids, and that the mRNA is stored in an untranslatable form as an inactive ribonucleoprotein particle for up to 1 week before it is translated. The analysis of the expression of fusions between the protamine gene and reporter genes in transgenic mice has demonstrated that sequences mapping in the 3'-untranslated region of the protamine mRNA are sufficient to confer protamine-like translational regulation on the chimeric mRNAs. It is proposed that sequence-specific RNA-binding proteins interact with the protamine 3'-untranslated region and mediate the temporal translational control. Future progress at elucidating the mechanism of translational regulation will come from the identification of translational control factors and their study in vitro and in vivo.  相似文献   

11.
Small RNAs associate with Argonaute proteins and serve as sequence-specific guides for regulation of mRNA stability, productive translation, chromatin organization, and genome structure. In animals, the Argonaute superfamily segregates into two clades. The Argonaute clade acts in RNAi and in microRNA-mediated gene regulation in partnership with 21-22 nt RNAs. The Piwi clade, and their 26-30 nt piRNA partners, have yet to be assigned definitive functions. In mice, two Piwi-family members have been demonstrated to have essential roles in spermatogenesis. Here, we examine the effects of disrupting the gene encoding the third family member, MIWI2. Miwi2-deficient mice display a meiotic-progression defect in early prophase of meiosis I and a marked and progressive loss of germ cells with age. These phenotypes may be linked to an inappropriate activation of transposable elements detected in Miwi2 mutants. Our observations suggest a conserved function for Piwi-clade proteins in the control of transposons in the germline.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The lipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces a versatile signaling phospholipid, phosphatidylinositol 4,5-bisphosphate. Three PIP5K isozymes, PIP5K1A, PIP5K1B, and PIP5K1C, have been identified in mammals so far. Although the functions of these three PIP5K isozymes have been extensively studied in vitro, the in vivo physiological roles of these PIP5K isozymes remain largely unknown. In this study, we examined the functions of PIP5K1A and PIP5K1B in spermatogenesis, using Pip5k1a-knockout (KO), Pip5k1b-KO, and Pip5k1a/Pip5k1b double (D)-KO mice. Pip5k1a-KO and D-KO males were subfertile and completely sterile, respectively. F-actin in the seminiferous epithelium was disorganized in the D-KO mice, although F-actin bundles at the apical ectoplasmic specialization was not affected. D-KO seminiferous tubules contained a greatly decreased number of elongated spermatids. Flagella of sperm from Pip5k1a-KO and D-KO mice remarkably underwent morphological change, whereas Pip5k1b-KO sperm were morphologically normal. Notably, the flagellar shape of D-KO sperm was more severely impaired than that of Pip5k1a-KO sperm. These results suggest that PIP5K1A and PIP5K1B may coordinately and/or redundantly function in the maintenance of sperm number and morphology during spermatogenesis.  相似文献   

19.
Fyn is a member of the Src family of non-receptor-type tyrosine kinases and plays an important role in signal transductions regulating cell proliferation and differentiation. Fyn immunoreactivity was localized in the Sertoli cells of mouse testes. Although fyn-deficient adult male mice were fertile, a significant reduction in testis weight and degenerated germ cells were observed at 3 and 4 wk of age. Electron microscopic examination revealed that fyn -/- testis has ultrastructural abnormalities in the specialized junctional structures of the Sertoli cells, the ectoplasmic specializations. Unusual vesicular structures were found in the actin filament layers of the ectoplasmic specializations of mutant mice. Immunohistochemical studies demonstrated that both Fyn and actin filaments were concentrated in the areas of ectoplasmic specializations. At these sites, a high level of phosphotyrosine was also immunostained in wild-type testes, whereas phosphotyrosine immunoreactivity was reduced in fyn -/- testes. Immunoblot analyses revealed that Fyn was mainly distributed within the Triton X-100-insoluble cytoskeletal fraction prepared from wild-type testes, suggesting that Fyn might be associated with cytoskeletal proteins such as actin filaments. These findings suggest that Fyn kinase functions at the ectoplasmic specializations of the Sertoli cells in the testes, regulating the dynamics of cytoskeletal proteins. Fyn-mediated signal transduction in the Sertoli cells may affect the survival and differentiation of germ cells at a specific stage during spermatogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号