首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.  相似文献   

2.
Previous research shows that gravity-sensing in flax (Linum usitatissimum) root is initiated during seed imbibition and precedes root emergence. In this study we investigated the developmental attenuation of flax root gravitropism post-germination and the involvement of ethylene. Gravity response deteriorated significantly from 3 to 11?h after root emergence, which occurred at around 19?h after imbibition (that is, from “age” 22 to 30?h). Although the root elongation rate increased from 22 to 30?h, the gravitropic curving rate declined steadily. Older roots were able to tolerate higher levels of exogenous IAA before inhibition of elongation and gravitropism occurred. The age-dependent effect of IAA on root growth and gravitropism suggests that young roots are more sensitive to auxin and respond to a smaller vertical auxin gradient than older roots upon horizontal gravistimulation. The ethylene synthesis inhibitor AVG (2-aminoethoxyvinyl glycine, 10?μM) or ethylene action inhibitor Ag+ (10?μM) stimulated gravitropic curvature of 30?h roots by 24 and 32%, respectively, but had no effect on 22?h roots, suggesting that as roots age, ethylene begins to play a role in root gravitropism. The auxin transport inhibitor NPA (N-naphthylphthalamic acid, 50?μM) reduced gravitropic curvature of 30?h roots by 24% but had no effect on 22?h roots. On the other hand, treating roots simultaneously with the auxin transport inhibitor and ethylene synthesis or action inhibitor stimulated gravitropic curvature of 30?h roots but not 22?h roots. Taken together, these data indicate that as roots develop, their weakened gravity response is due to decreased auxin sensitivity and possibly auxin transport regulated by ethylene.  相似文献   

3.
Hydrotropism and Its Interaction with Gravitropism in Maize Roots   总被引:7,自引:0,他引:7       下载免费PDF全文
We have partially characterized root hydrotropism and its interaction with gravitropism in maize (Zea mays L.). Roots of Golden Cross Bantam 70, which require light for orthogravitropism, showed positive hydrotropism; bending upward when placed horizontally below a hydrostimulant (moist cheesecloth) in 85% relative humidity (RH) and in total darkness. However, the light-exposed roots of Golden Cross Bantam 70 or roots of a normal maize cultivar, Burpee Snow Cross, showed positive gravitropism under the same conditions; bending downward when placed horizontally below the hydrostimulant in 85% RH. Light-exposed roots of Golden Cross Bantam 70 placed at 70° below the horizontal plane responded positively hydrotropically, but gravitropism overcame the hydrotropism when the roots were placed at 45° below the horizontal. Roots placed vertically with the tip down in 85% RH bent to the side toward the hydrostimulant in both cultivars, and light conditions did not affect the response. Such vertical roots did not respond when the humidity was maintained near saturation. These results suggest that hydrotropic and gravitropic responses interact with one another depending on the intensity of one or both factors. Removal of the approximately 1.5 millimeter root tip blocked both hydrotropic and gravitropic responses in the two cultivars. However, removal of visible root tip mucilage did not affect hydrotropism or gravitropism in either cultivar.  相似文献   

4.
Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.  相似文献   

5.
Malformins, a small family of cyclic pentapeptides, are active plant growth regulators isolated from the fungusAspergillus niger. We purified malformin A1 from the crude malformin A mixture, and studied its action in the gravitropic response of maize roots. Intact primary roots that had been pretreated vertically with malformin A1 were placed in a humidified box in the horizontal position. Positive curvature (downward) was inhibited in the pretreated roots compared with the control. In addition, we measured the lateral transport of IAA in primary roots. Roots pretreated with malformin A, did not show asymmetric distribution of IAA between the upper and lower sides of the elongation zone. Malformin A, also stimulated ethylene production in maize root segments. Our results had suggested that malformin A1 might inhibit the lateral transport of IAA across the roots from the upper to the lower side because of an increased level of ethylene. Therefore, we placed more IAA on the upper side at the initial phase of gravistimulation. These results were consistent with malformin A1-pretreated roots showing inhibited positive gravitropic curvature.  相似文献   

6.
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.  相似文献   

7.
Root hydrotropism of an agravitropic pea mutant, ageotropum   总被引:3,自引:0,他引:3  
We have partially characterized root hydrotropism of an agravitropic pea mutant, ageotropum (from Pisum sativum L. cv. Weibull's Weitor), without interference of gravitropism. Lowering the atmospheric air humidity inhibited root elongation and caused root curvature toward the moisture-saturated substrate in ageotropum pea. Removal of root tips approximately 1.5 mm in length blocked the hydrotropic response. A computer-assisted image analysis showed that the hydrotropic curvature in the roots of ageotropum pea was chiefly due to a greater inhibition of elongation on the humid side than the dry side of the roots. Similarly, gravitropic curvature of Alaska pea roots resulted from inhibition of elongation on the lower side of the horizontally placed roots, while the upper side of the roots maintained a normal growth rate. Gravitropic bending of Alaska pea roots was apparent 30 min after stimulation, whereas differential growth as well as curvature in positive root hydrotropism of ageotropum pea became visible 4–5 h after the continuous hydrostimulation. Application of 2,3,5-triiodobenzoic acid or ethyleneglycol-bis-( β -aminoethylether)-N,N,N',N'-tetraacetic acid was inhibitory to both root hydrotropism of ageotropum pea and root gravitropism of Alaska pea. Some mutual response mechanism for both hydrotropism and gravitropism may exist in roots, although the stimulusperception mechanisms differ from one another.  相似文献   

8.
The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.  相似文献   

9.
Using an auxanometer and time-lapse cinematography we have studied the timing of abscisic acid (ABA) effects on elongation, gravitropic curvature, and hydrogen-ion efflux in several cultivars of maize (Zea mays L.). The effect of high concentrations (e.g. 0.1 mM) of ABA on root elongation is triphasic, including 1) a period of promotion lasting approximately 12 h, 2) a subsequent period of increasing inhibition lasting approximately 12h, and 3) gradual recovery to a rate within approximately 80% of the control rate. With lower concentrations of ABA (e.g. 0.1 μM) only the transient promotive phase is seen. Abscisic acid enhances ethylene biosynthesis in roots of maize but suppression of ethylene biosynthesis does not prevent the long-term inhibitory action of ABA on growth. Application of ABA (0.1 mM) to the upper surface of horizontally placed roots accelerates positive gravitropism. Application of ABA to the lower surface retards gravitropism and in some cases causes the roots to curve upward against the direction of gravity. These observations are consistent with our finding that the initial effect of ABA on root elongation is stimulatory. Since root gravitropism is rapid enough to be completed within the stimulatory phase of ABA action, the data argue against hypotheses of gravitropism based upon accumulation of ABA to inhibitory levels on the lower side of a hirizontal root.  相似文献   

10.
Autonomic Straightening after Gravitropic Curvature of Cress Roots   总被引:2,自引:0,他引:2       下载免费PDF全文
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.  相似文献   

11.
Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.  相似文献   

12.
The direction of root growth can be studied by analyzing the trajectories of roots growing in soil. Both the primary seminal root and nodal roots of maize attain a preferred, or liminal, angle of growth that deviates from the vertical. These roots are said to be plagiogravitropic. Experiments using plants grown in soil-filled boxes revealed that the primary seminal root is truly plagiogravitropic. It shows both positive and negative gravitropism in response to gravity stimuli and tends to maintain its direction even after growing around obstacles. These are experimental results suggesting that plagiogravitropic growth is controlled by internal factors. The orientation of the grain affects the establishment of the liminal angle of the primary seminal root, and both the position of their node of origin and the root diameter are closely related to the plagiogravitropic behaviour of nodal roots. Several external factors are also known to influence plagiogravitropism. Low soil water content causes a decrease in the angle of growth and soil mechanical resistance suppresses the gravitropic curvature. Plagiogravitropic behaviour of both seminal and nodal roots plays a significant role in shaping the root system.  相似文献   

13.
Growth and early gravitropic responses of corn roots in solution have been studied using time-lapse photography. Aeration was required for both root growth and gravitropism. The optimum pH for gravitropism was in the range 5 to 6. The bending response seemed to be greater for roots in non-buffered solution than in buffered solution. Fastest growth and maximum curvature occurred with about 0.2 mol m−3 Ca2+. Under some conditions, the gravitropic response started with apparently negligible time delay after the start of the gravitropic stimulus. This may denote graviperception in or near the elongation zone itself. This mechanism for early but relatively weak gravitropism may help to explain a variety of gravitropic responses such as the ‘early wrong way’ curvature, and the behaviour of roots whose columella cells lack amyloplasts. More rapid bending appears to start at about 20 min, which is consistent with observations on roots in humid air and with the accepted statolith model of perception in the root cap.  相似文献   

14.
We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone (a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.  相似文献   

15.
Ishikawa H  Hasenstein KH  Evans ML 《Planta》1991,183(3):381-390
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.  相似文献   

16.
We tested whether the first response to gravistimulation is an asymmetry in the root tip that results from differential growth of the rootcap itself. The displacement of markers on the rootcap surface of maize (Zea mays L. cv. Merit) roots was quantified from videotaped images using customized software. The method was sensitive enough to detect marker displacements down to 15 microns and root curvature as early as 8 min after gravistimulation. No differential growth of the upper and lower sides of the cap occurred before or during root curvature. Fewer than a third of all gravistimulated roots developed an asymmetrical outline of the root tip after curvature had started, and this asymmetry did not occur in the rootcap itself. Our data support the view that the regions of gravitropic sensing and curvature are spatially separate during all phases of gravitropism in maize roots.  相似文献   

17.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

18.
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.Abbreviations 9-HFCA 9-hydroxyfluorenecarboxylic acid - NPA naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - IAA indole-3-acetic acid  相似文献   

19.
We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67°. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.  相似文献   

20.
M. Schurzmann  V. Hild 《Planta》1980,150(1):32-36
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA abscisic acid - IAA 3-indoleacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号