首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

2.
Substance P-like immunoreactivity in the nervous system of hydra   总被引:3,自引:0,他引:3  
Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

3.
Summary Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin generelated immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

4.
Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin gene-related immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

5.
Summary The presence of peptides in the gastrointestinal tract of the rainbow trout, Salmo gairdneri, was investigated immunocytochemically. VIP-like immunoreactivity was demonstrated in nerves in all layers of the stomach and the intestine, whereas substance P-like immunoreactivity was localized to endocrine cells, predominantly in the mucosa of the stomach, and to nerves mainly concentrated in the myenteric plexus throughout the gut. Endocrine cells reactive to gastrin/CCK antiserum were demonstrated in the intestinal mucosa, while no immunoreactivity was found in the stomach. Bombesin-immunoreactive and somatostatin-immunoreactive cells were localized in the stomach mucosa, and cells reactive to glucagon antiserum in the intestinal mucosa. Radioimmunoassay of stomach mucosa and muscle confirmed the presence of VIP-like and substance P-like immunoreactivity in these tissues, while gastrin/CCK-like immunoreactivity was low and bombesin-like immuno-reactivity was insignificant. In conclusion, molecules resembling the mammalian brain-gut peptides may be involved in the neuronal and hormonal control of gut function in fish.  相似文献   

6.
Summary Numerous nerve fibres containing acetylcholinesterase and noradrenaline, as well as avian pancreatic polypeptide-, vasoactive intestinal peptide-, or substance P-like immunoreactivity are observed around arteries in the external carotid rete of the cat. The nerves are located in the adventitial layer close to the media. It is possible that adrenergic, cholinergic and peptidergic nerve fibres may have a strong neurogenic influence on the rete blood vessels.  相似文献   

7.
Summary Single- and dual-labelling immunohistochemistry were used to determine the distribution and coexistence of neuropeptides in perivascular nerves of the large arteries and veins of the snake, Elaphe obsoleta, using antibodies for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, neuropeptide Y, galanin, somatostatin, and leu-enkephalin. Blood vessels were sampled from four regions along the body of the snake: region 1, arteries and veins anterior to the heart; region 2, central vasculature 5 cm anterior and 10 cm posterior to the heart; region 3, arteries and veins in a 30-cm region posterior to the liver; and region 4, dorsal aorta and renal arteries, renal and intestinal veins, 5–30 cm cephalad of the vent. A moderate to dense distribution of vasoactive intestinal polypeptide-like immunoreactive fibres was found in most arteries and veins of regions 1–3, but fibres were absent from the vessels of region 4. The majority of vasoactive intestinal polypeptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were unaffected by either capsaicin or 6-hydroxydopamine (6-OHDA) pretreatment. In the anterior section of the snake, the vagal trunks contained many cell bodies with colocalized vasoactive intestinal polypeptide and substance P-like immunoreactivity. It is suggested that the vasoactive intestinal polypeptide/substance P-like immunoreactive cell bodies and fibres are parasympathetic postganglionic nerves. Neuropeptide Y-like immunoreactive fibres were observed in all arteries and veins, being most dense in regions 3 and 4. The majority of these fibres also contained colocalized galanin-like immunoreactivity, and were absent in tissues from 6-OHDA pretreated snakes, suggesting that neuropeptide Y and galanin are colocalized in adrenergic nerves. A small number of neuropeptide Y-like immunoreactive fibres contained vasoactive intestinal polypeptide but not galanin, and were unaffected by 6-OHDA treatment. All calcitonin gene-related peptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were observed in all vessels, being particularly dense in the carotid artery and jugular veins. All calcitonin gene-related peptide/substance P-like immunoreactive fibres appeared damaged after capsaicin treatment suggesting they represent fibres from afferent sensory neurons. A sparse plexus of somatostatin-like immunoreactive fibres was observed in the vessels only from region 4. No enkephalin-like immunoreactive fibres were found in any blood vessels from any region. This study provides morphological evidence to suggest that there is considerable functional specialization within the components of the rat snake peripheral autonomic system controlling the circulation, in particular the regulation of venous capacitance.  相似文献   

8.
1. The distribution of substance P-like immunoreactivity was studied in Hydra attenuata using the peroxidase-antiperoxidase technique. 2. Positive immunoreactivity was observed in ectodermal nerve cells and fibers as well as in nematoblasts at various stages of differentiation. 3. Administration of synthetic substance P to regenerating hydra did not affect regeneration rates. Exogenous substance P administration stimulated tentacle contraction and nematocyst displacement within battery cells. 4. It is suggested that substance P acts on the contractile apparatus of Hydra tissues.  相似文献   

9.
The distribution of serotonin-, GABA- and substance P-like immunoreactivity has been studied in the cerebral and visceral ganglia and in some peripheral tissues of Mytilus galloprovincialis (Moleusca, Bivalvia). Cerebral ganglia contain a developed serotonin-immunoreactive neuronal subpopulation and numerous GABA-immunoreactive neurons, whereas neurons positive for substance P are sparse. In peripheral tissues innervated by the cerebral ganglia (labial palps and oesophagus) only serotonin-immunoreactive nerve fibers were found. In the visceral ganglia, serotonin- and GABA-immunoreactive neurons are far less numerous than in the cerebral ganglia, whereas several neurons positive for substance P are scattered in all cortical zones. Serotonin-immunoreactive plexuses innervate the posterior adductor muscle and the gill filaments which contain also a developed nerve network positive for substance P. The distribution pattern of the immunoreactive elements in the ganglia and in peripheral territories indicates that GABA should exert only a central action, whereas serotonin and a substance P-like peptide are involved both in central and peripheral neurotransmission.  相似文献   

10.
Summary Endocrine cells containing bombesin-, enkephalin-, gastrin/CCK-, 5-HT-, and substance P-like material were demonstrated in the alimentary tract of Poecilia reticulata and Leuciscus idus melanotus. Endocrine cells with neuropeptide-Y-like immunoreactivity were found only in P. reticulata, those with VIP-like immunoreactivity only in L. idus melanotus. Gut nerves showing bombesin-, G/CCK-5-HT-, neurotensin-, substance P-and VIP-like immunoreactivity were observed in both species investigated, enkephalin- and neuropeptide Y-like immunoreactivity in P. reticulata alone. The distribution and amount of endocrine cells and nerves along the gut as visualized with the appropriate antisera varied in both teleosts. Histologically, the intestinal tract of these stomachless fish can be divided into three regions. A large number of endocrine cells with VIP-like immunoreactivity was noted in the rectum of L. idus melanotus. Endocrine cells containing bombesin-, enkepha-lin- and substance P-like material were found only in intestinal parts I and II in L. idus melanotus. Neuropeptide Y-like immunoreactivity was absent from intestinal part I of P. reticulata. The influence of starvation on the immunoreactivity of nerves and enteroendocrine cells in the teleost intestine was examined. After a starvation period of more than 6 weeks, no alterations were observed either in the appearance or amount of nerve and endocrine cell immunoreactivity.  相似文献   

11.
Summary The tibialis anterior, extensor digitorum longus and soleus muscles in the rat were examined with respect to the presence of calcitonin gene-related peptide-like as well as substance P-like immunoreactivity. In some of the motor endplates in these muscles, identified by staining for acetylcholinesterase activity, calcitonin gene-related peptide-like immunoreactivity was detected, but in others it was not. Calcitonin gene-related peptide-like immunoreactivity was found to coexist with substance-P-like immunoreactivity in nerve fibres located outside and inside the capsule of the muscle spindles, as well as in nerve fibres located in nerve fascicles. These fibres presumably represent sensory nerve fibres. Calcitonin gene-related peptide-like immunoreactivity, but not substance P-like immunoreactivity, was also detected, in cap-like structures located on the surface of the intrafusal muscle fibres in the polar regions of the spindles, structures which are likely to correspond to motor plate endings. The observations suggest that calcitonin gene-related peptide is heterogeneously present in the endplates of rat hind limb muscles, and gives for the first time immunohistochemical evidence for the presence of calcitonin gene-related peptide and substance P in the innervation of muscle spindles.  相似文献   

12.
Summary The pars distalis of the anterior pituitary is known to be regulated by hypothalamic hormones. Recently, we have discovered the presence of substance P-like immunoreactive nerve fibers in the pars distalis of the monkeys. Substance P-like immunoreactivity in the pars distalis of the dog was investigated in this study. A substantial amount of substance P-like immunoreactive nerve fibers with a large amount of varicosities were found. They were widely distributed in the gland, more abundant along its periphery. Most of them were closely related to the glandular tissue, some were located on vascular walls. Substance P-like immunoreactive nerve fibers were also found in the meningeal sheath of the anterior pituitary. They could be followed into the parenchyma of the gland.  相似文献   

13.
The presence of met- and leu-enkephalin-like immunoreactive materials in nerve, gut, seminal vesicle and body wall tissues of the earthworm Lumbricus terrestris has been demonstrated by means of radioimmunoassay technique. The greatest activity of met- and leu-enkephalin-like immunoreactivity in earthworm gut appears in regions of high digestive enzyme activity and gastrin-like immunoreactivity where it presumably plays a role in regulation of gut function. In all tissues studied the levels of met-enkephalin-like immunoreactivity were higher than that of leu-enkephalin-like immunoreactivity. Dual localization of met- and leu-enkephalin-like immunoreactivity in earthworm gut and nerve tissues follows the pattern observed of peptide hormones in vertebrates which are common to both endocrine and non-endocrine tissues.  相似文献   

14.
The distributions of peptide-containing nerves in the urinary bladder of the toad, Bufo marinus, were studied by means of fluorescence immunohistochemistry of whole-mount preparations. The bundles of smooth muscle in the bladder are well supplied by varicose nerve fibres displaying somatostatin-like immunoreactivity; these fibres probably arise from intrinsic perikarya. The urinary bladder also has a well-developed plexus of nerves containing substance P-like immunoreactive material; these elements probably represent sensory nerves of extrinsic origin. Nerve fibres showing immunoreactivity to vasoactive intestinal polypeptide (VIP) or enkephalin are rare within the urinary bladder of the toad. It is considered unlikely that any of these peptides directly mediates the hyoscine-resistant excitatory response of the smooth muscle to nerve stimulation in the toad bladder.  相似文献   

15.
Summary The distribution of nerve growth factor receptor (NGF receptor)-like immunoreactivity in pulps of developing primary and mature permanent cat canine teeth was examined, by use of a monoclonal antibody against NGF receptor detected by fluorescence immunohistochemistry and pre-embedding immunocytochemical light- and electron microscopy. Both primary and permanent pulps contained a vast number of NGF receptor-like immunoreactive nerves. Immunolabelling appeared to be localized both to axons and Schwann cells. In addition, many blood vessel walls in immature primary tooth pulps showed NGF receptor-like immunoreactivity, in contrast to permanent pulps where blood vessels rarely were NGF receptor-immunoreactive. Double-labelling immunofluorescence experiments revealed that in the permanent pulp a majority of the NGF receptor-positive nerves also showed calcitonin gene-related peptide (CGRP)-like immunoreactivity, and many showed substance P-like immunoreactivity. However, nerve fibers with neuropeptide Y-like immunoreactivity lacked NGF receptor-like immunoreactivity. In developing primary tooth pulps fewer NGF receptor-positive nerves were CGRP-like immunoreactive or substance P-like immunoreactive, as compared to the permanent pulp. Neuropeptide Y-like immunoreactive nerve fibers were not detected in the primary tooth pulp. The results suggest a role for nerve growth factor in both developing and mature sensory nerves of the tooth pulp.  相似文献   

16.
Rat spinal cord, dorsal root ganglia and skin were investigated employing immunohistochemical technique with specific antisera to neurokinin A and substance P. Neurokinin A-like immunoreactivity was detected in the spinal dorsal horn and skin with a similar distribution pattern as that of substance P-like immunoreactivity. After dorsal root transection a parallel decrease of neurokinin A and substance P-like immunoreactivity was observed in the dorsal horn. Using colchicine pretreatment a population of neurokinin A positive cell bodies was seen in the dorsal root ganglia, and by comparison of consecutive sections of the same cells stained for substance P it was revealed that these neurons also display substance P-like immunoreactivity. However, substance P-, but not neurokinin A-, immunoreactive cells were also observed. It is concluded that neurokinin A- and substance P-like immunoreactivity coexist in a population of rat primary sensory neurons.  相似文献   

17.
Summary Rat spinal cord, dorsal root ganglia and skin were investigated employing immunohistochemical technique with specific antisera to neurokinin A and substance P. Neurokinin A-like immunoreactivity was detected in the spinal dorsal horn and skin with a similar distribution pattern as that of substance P-like immunoreactivity. After dorsal root transection a parallell decrease of neurokinin A and substance P-like immunoreactivity was observed in the dorsal horn. Using colchicine pretreatment a population of neurokinin A positive cell bodies was seen in the dorsal root ganglia, and by comparison of consecutive sections of the same cells stained for substance P it was revealed that these neurons also display substance P-like immunoreactivity. However, substance P-, but not neurokinin A-, immunoreactive cells were also observed. It is concluded that neurokinin A- and substance P-like immunoreactivity coexist in a population of rat primary sensory neurons.  相似文献   

18.
Rat trigeminal ganglion neurons projecting to the oral mucosa or to tooth pulps have different cell diameters and contain different chemical markers. In the present paper we examine whether trigeminal ganglion neurons sending axons to gingiva or tooth pulps in the lower jaw of the cichlid Tilapia mariae differ in a similar way. Retrograde tracing with fluorescent latex microspheres revealed labelled gingival and pulpal neurons in the caudal part of the trigeminal ganglion. The gingival neurons had a unimodal size distribution (peak 11 μm; range 8–14 μm) and the pulpal neurons exhibited a bimodal size distribution (peaks 12 and 25 μm; range 10–40 μm). Immunohistochemistry revealed a calcitonin gene-related peptide-like immunoreactivity in some 40% of the gingival neurons and a substance P-like immunoreactivity in 30%. Of the small pulpal neurons about 60% exhibited a calcitonin gene-related peptide-like immunoreactivity and 15% showed a substance P-like immunoreactivity. Of the large pulpal neurons some 70% exhibited a calcitonin gene-related peptide-like immunoreactivity. These neurons did not show a substance P-like immunoreactivity. In some animals a few trigeminal ganglion neurons showed a neuropeptide Y- or a vasoactive intestinal polypeptide-like immunoreactivity. Perikarya with a tyrosine hydroxylase- or a choline acetyl transferase-like immunoreactivity were not observed. We conclude that gingiva and tooth pulps in the lower jaw of T. mariae are innervated by trigeminal ganglion neurons, the cell diameters and neuropeptide contents of which differ in a pattern similar to that in the rat. Hence, this seems to represent a conserved evolutionary pattern.  相似文献   

19.
The gut of silver eels (Anguilla anguilla L.) was investigated in order to describe both the cholinergic and adrenergic intramural innervations, and the localization of possible accessory neuromediators. Histochemical reactions for the demonstration of nicotinamide adenine dinucleotide phosphate, reduced form-(NADPH-)diaphorase and acetylcholinesterase (AChEase) were performed, as well as the immunohistochemical testing of tyrosine hydroxylase, met-enkephalin, substance P, calcitonin gene-related peptide (CGRP), bombesin, vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), somatostatin, cholecystokinin-octapeptide (CCK-8), serotonin, cholineacetyl transferase. The results evidenced a different pattern in comparison with other vertebrates, namely mammals, and with other fish. Both NADPH-diaphorase and AChEase activities were histochemically detected all along the gut in the myenteric plexus, the inner musculature and the propria-submucosa. Tyrosine hydroxylase immunoreactivity was observed in the intestinal tract only, both in the myenteric plexus and in the inner musculature. Several neuropeptides (metenkephalin, CGRP, bombesin, substance P, VIP, NPY, somatostatin) were, in addition, detected in the intramural innervation; some of them also in epithelial cells of the diffuse endocrine system (met-enkephalin, substance P, NPY, somatostatin). Serotonin was only present in endocrine cells. Tyrosine hydroxylase immunoreactivity was present in localizations similar to those of NADPH-diaphorase-reactivity, and in the same nerve bundles in which substance P- and CGRP-like-immunoreactivities were detectable in the intestinal tract. In addition, NADPH-diaphorase-reactive neurons showed an anatomical relationship with AChEase-reactive nerve terminals, and a similar relationship existed between the latter and substance P-like immunoreactivity.  相似文献   

20.
Recent studies have suggested that enteric inhibitory neurotransmission is mediated via interstitial cells of Cajal in some gastrointestinal tissues. This study describes the physical relationships between enteric neurons and interstitial cells of Cajal in the deep muscular plexus (IC-DMP) of the guinea-pig small intestine. c-Kit and vimentin were colocalized in the cell bodies and fine cellular processes of interstitial cells of the deep muscular plexus. Anti-vimentin antibodies were subsequently used to examine the relationships of interstitial cells with inhibitory motor neurons (as identified by nitric oxide synthase-like immunoreactivity) and excitatory motor neurons (using substance P-like immunoreactivity). Neurons with nitric oxide synthase- and substance P-like immunoreactivities were closely associated with the cell bodies of interstitial cells and ramified along their processes for distances greater than 300 7m. With transmission electron microscopy, we noted close relationships between interstitial cells and the nitric oxide synthase- and substance P-like immunoreactive axonal varicosities. Varicosities of nitric oxide synthase and substance P neurons were found as close as 20 and 25 nm from interstitial cells, respectively. Specialized junctions with increased electron density of pre- and postsynaptic membranes were observed at close contact points between nitric oxide synthase- and substance P-like immunoreactive neurons and interstitial cells. Close structural relationships (approximately 25 nm) were also occasionally observed between either nitric oxide synthase- and substance P-like immunoreactive varicosities and smooth muscle cells of the outer circular muscle layer. The data suggest that interstitial cells in the deep muscle plexus are heavily innervated by excitatory and inhibitory enteric motor neurons. Thus, these interstitial cells may provide an important, but probably not exclusive, pathway for nerve-muscle communication in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号