首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
数字图像处理技术已被广泛用于树轮宽度测量,但大多集中在边界清晰可见的针叶树种,对于木材解剖结构复杂、树轮边界清晰度较差的阔叶树种,传统的图像处理技术表现不佳。为了改善阔叶树种的树轮边界识别精度,本文提出了一种基于U-Net卷积神经网络模型的树轮宽度测量算法。以鱼鳞云杉(Picea jezoensis var.komarovii)、臭冷杉(Abies nephrolepis)、红松(Pinus koraiensis)、白桦(Betula platyphylla)、枫桦(Betula costata)、榆树(Ulmus pumila)的树芯为对象,提出了一种基于U-Net的树轮边界检测模型。采用3种评价指标比较了U-Net方法与手工标注方法的差异,并与WinDENDRO测量得到的树轮宽度进行了精度对比。结果显示,U-Net识别到的树轮边界与实际边界精确匹配,尤其是对阔叶树种树轮边界的检测精度相比传统的数字图像处理方法有显著提高,通过3种评价指标证明所得到的树轮边界精确可靠,在树轮分析中具有较高的实用价值。  相似文献   

2.
张权  刘禹  李强  孙长峰  李腾  李珮  叶远达 《应用生态学报》2021,32(10):3671-3679
归一化差异植被指数(NDVI)被广泛应用于植被研究的各个领域,但由于观测时长较短,难以满足长时间尺度的研究需要。基于巴音布鲁克地区雪岭云杉建立了树轮宽度年表(STD),计算年表和NDVI同气象观测数据的相关系数。结果表明:树轮宽度指数和NDVI均与同时段的气象数据具有显著相关。结合宽度年表与6—8月NDVI间的显著正相关(r=0.7,P<0.01,n=38),使用回归模型重建了研究区过去339年的夏季(6—8月)NDVI变化序列,在1680—2018年,重建序列有4个高植被覆盖时段(1738—1765、1786—1798、1964—1973和2000—2018年)和5个低植被覆盖时段(1690—1714、1825—1834、1850—1880、1895—1920和1945—1955年)。重建结果也反映了天山中部水文气候。与周边重建的对比显示,当开都河径流量增加,且研究区处于较为潮湿的环境时,植被覆盖相对较高,反之植被覆盖偏低。重建序列的极值也捕捉了历史文献中一系列自然灾害。混合单粒子拉格朗日综合轨迹模型(HYSPLT)后向轨迹模型和风场分析表明,NDVI异常受到西风带来的降水影响。  相似文献   

3.
西大别山小林海黄山松树轮宽度的气候意义   总被引:1,自引:0,他引:1  
基于树轮年代学研究方法,在鄂、豫、皖交界的西大别山北坡进行黄山松研究,建立了1915—2011年的树轮宽度标准年表(STD).结果表明: 年表中较高的平均敏感度表明树轮中含有较多的气候变化的高频信息;较高的一阶自相关系数表明树轮生长存在显著的前期生长滞后效应;高信噪比和样本解释总量暗示树轮中含有较多的环境信息.标准年表序列指数与1959—2011年间气象因子的相关分析表明,黄山松树轮宽度生长受生长季末(9—10月)温度、降水量和相对湿度的影响较大;与9—10月帕尔默干旱指数呈显著正相关. 9、10月的水热组合是影响小林海黄山松树轮生长的主要因子.
  相似文献   

4.
祁连山中部地区树轮宽度年表特征随海拔高度的变化   总被引:29,自引:4,他引:29  
利用采自祁连山中部地区不同海拔高度的四个采样点的青海云杉树轮样芯 ,分别建立了树木年轮宽度年表。发现随海拔高度的上升 ,树轮宽度指数的振幅减小 ,年表的平均敏感性降低 ,样本间的一致性也逐步减小 ,上限年表与气候因子的相关性最低 ,这与目前大家普遍认同的上限树木的生长受温度控制的概念并不一致。进一步的分析表明 ,年表的敏感性随海拔高度降低主要是由于该区域树木生长的限制因子是春季降水 ,而降水随海拔高度的升高而增加 ,从而使得春季降水对树木生长的限制作用随海拔升高而逐步减弱 ;生物学指标的测定结果表明 ,生长在高海拔的树木对环境的生态适应策略发生变化 ,其生理代谢维持在较低水平 ,以避免环境变化带来的影响 ,因此生长在高海拔的青海云杉对环境变化的敏感性较差。  相似文献   

5.
孙鹏森  刘世荣  刘京涛  李崇巍  林勇  江洪 《生态学报》2006,26(11):3826-3834
短周期的低分辨率遥感数据为大面积估算LAI及季节动态和物候趋势提供了有利工具,但基于高分辨率LAI的遥感估算模型在低分辨率遥感数据上应用有很大的不确定性。研究利用LAI-2000冠层分析仪与跟踪辐射和冠层结构测量仪(TRAC),测定了岷江上游流域范围内490块野外调查样地(50m×50m样方)的LAI数据,结合同期较高精度卫星数据(TM)建立了不同植被类型的LAI-NDVI算法,在经过传感器的相对校正后,将这种算法应用到同期分辨率较低的MODIS数据和SPOT VEGETATION数据上。结果表明,30m分辨率的TM LAI的均值为4.53,250m MODIS LAI的均值为3.55,1000m VGT LAI的均值为4.20,随着栅格分辨率的降低,总体标准差有增加的趋势,并且LAI值也有不同程度的低估,其中MODIS LAI值被低估约22%。但利用TM LAI数据验证MODIS和VGT LAI数据后发现,250m的MODIS数据预测误差在30%左右,1000m的SPOT数据预测误差则高达50%,空间重采样分析表明,栅格分辨率的降低是导致预测误差扩大的主要原因,而这也是岷江流域植被分布破碎化的体现。  相似文献   

6.
以河南登封嵩山地区不同坡向的油松人工林为对象,分别建立了跑马岭、峻极峰及区域油松差值年表。结果表明: 跑马岭油松年表的质量高于峻极峰油松年表;跑马岭油松年表和峻极峰油松年表都包含较高的气候信息,都与当年2月平均气温、生长季末期(9—10月)平均气温和平均最高温呈显著正相关,与当年5月的平均最高温呈显著负相关;跑马岭和峻极峰油松径向生长对气候响应有一定的差异,跑马岭油松径向生长主要与3月平均最低温和9月降水量呈显著正相关,而峻极峰与5月降水量和9月平均最低温呈显著正相关;区域油松年表包含了更多的气候信息。利用多元回归分析方法能较好地模拟出油松树轮宽度生长的限制因素是多个月的温度,尤其是当年9月平均气温,这与相关分析结果一致。本研究可以为本地区森林保护和生态建设提供基础服务。  相似文献   

7.
利用采自额尔齐斯河上游6个采点的西伯利亚云杉(Picea obovata Ledeb)树轮样本建立了区域树轮宽度年表。与气候要素的相关分析表明,该地区树木径向生长主要受降水制约,区域树轮宽度年表与富蕴气象站上年7月至当年6月的降水总量相关显著。在此基础上建立了转换方程,重建了额尔齐斯河上游地区1722—2012年上年7月至当年6月的降水总量,方差解释量高达55.1%(调整自由度后为54.2%)。重建结果显示,该地区过去291年间存在9个降水偏多的时期和8个降水偏少的时期。降水重建序列还存在2.1a和3.2a的显著周期及2.3、21.6、24.3a的较显著周期,并且在1876—1877年及1983年前后发生了降水突变。空间相关分析表明,重建的上年7月至当年6月降水量对额尔齐斯河上游阿勒泰地区的降水量具有很好的空间代表性。此外,重建结果还与周边地区其他基于树轮资料重建的降水序列的干湿变化有较好的一致性。  相似文献   

8.
基于阴山东部油松树轮样芯,建立采样区域树轮宽度年表,并计算器测时期(AD 1952—2007)月均温和月降水量与树轮宽度年表的相关系数。结果表明: 树轮宽度年表与上一年9月至当年6月降水量变化的相关性最高(r=0.73,n=56,P<0.01),基于此重建了阴山东部过去399年(AD 1619—2017)上一年9月至当年6月的降水量变化历史。该重建解释了器测时期上一年9月至当年6月降水量54.9%的方差,经“留一法”交叉验证和分段独立检验证明,重建方程稳定可靠。在年代际尺度上,过去399年存在4个湿润时期(AD 1619—1663、AD 1705—1711、AD 1945—1963和AD 1979—2017)和4个干旱时期(AD 1734—1767、AD 1786—1814、AD 1839—1867和AD 1888—1942)。其中,AD 1979—2017是最湿润的时期,而AD 1888—1942是干旱持续最长的时段,包含最干旱时期1920s晚期。功率谱分析显示,过去399年该区降水具有2~7年和125年准周期变化。通过与邻近区域重建对比及空间相关分析表明,本降水重建序列可以较好地代表研究区域的降水变化。  相似文献   

9.
通过对大兴安岭北部樟子松树轮样品高向的年轮宽度和稳定碳同位素比率(δ13C)进行测定,分析了高向上δ13C的变化特征及其与年轮宽度的关系.结果表明:在木质部全轮、早材和树皮内皮3种成分中,样品高向δ13C均呈现由顶部至基部先显著增加,在冠层底部达到最大值,再向下迅速减少至谷值的变化趋势.早晚材平均宽度比由基部至顶部增大.高向上δ13C年均值序列与轮宽年均值序列呈现较为明显的反向对应关系,与早晚材宽度比年均值序列呈现在冠层以上较为一致的变化趋势.样本高向上年轮宽度序列及δ13C序列均存在不同程度的显著差异,δ13C值的高向变化与年际变化基本处于同一量级.树体高向δ13C序列逐年变化趋势基本一致,同一高度盘的δ13C序列与年轮宽度序列基本呈负相关,但不同高度的显著性有所差异.  相似文献   

10.
孙鹏森  刘世荣  刘京涛  李崇巍  林勇  江洪 《生态学报》2006,26(11):3826-3834
短周期的低分辨率遥感数据为大面积估算LAI及季节动态和物候趋势提供了有利工具,但基于高分辨率LAI的遥感估算模型在低分辨率遥感数据上应用有很大的不确定性。研究利用LAI-2000冠层分析仪与跟踪辐射和冠层结构测量仪(TRAC),测定了岷江上游流域范围内490块野外调查样地(50m×50m样方)的LAI数据,结合同期较高精度卫星数据(TM)建立了不同植被类型的LAI-NDVI算法,在经过传感器的相对校正后,将这种算法应用到同期分辨率较低的MODIS数据和SPOT VEGETATION数据上。结果表明,30m 分辨率的TM LAI的均值为4.53,250m MODIS LAI的均值为3.55,1000m VGT LAI的均值为4.20,随着栅格分辨率的降低,总体标准差有增加的趋势,并且LAI值也有不同程度的低估,其中MODIS LAI值被低估约22%。但利用TM LAI数据验证MODIS 和VGT LAI数据后发现,250m的MODIS数据预测误差在30%左右,1000m的SPOT数据预测误差则高达50%,空间重采样分析表明,栅格分辨率的降低是导致预测误差扩大的主要原因,而这也是岷江流域植被分布破碎化的体现。  相似文献   

11.
青藏高原植被生长季NDVI时空变化与影响因素   总被引:7,自引:0,他引:7  
青藏高原是中国乃至亚洲的生态屏障,研究其植被对气候变化的响应对区域生态保护具有重要的现实意义.基于MOD09A1数据反演的生长季归一化植被指数(NDVI),分析2001-2018年青藏高原植被生长季NDVI时空特征和变化趋势,结合气象站点数据阐释NDVI与气候因子的关系.结果 表明:研究期间,青藏高原植被生长季NDVI...  相似文献   

12.
利用1982~2000年4~10月的AVHRR-NDVI数据,分析了大尺度的气候(温度)变化对欧亚大陆植被状况的影响.分析方法为奇异值分解,从温度和NDVI的年际变化中检测出二者最重要和最密切的大尺度空间相关特征.用每个奇异值的平方占总的协方差平方和的比例(解释率),可以度量每对模态的重要性.春季(4和5月)、夏季和秋季(9和10月)的解释率分别是60.9%、39.5%和24.6%,这说明整体上春季植被状况对温度的敏感性高于夏季和秋季.奇异值分解的显著模态中心是二者关系最密切的地区,也就是NDVI对温度最敏感的地区,春季为西西伯利亚和东欧东北部,敏感性为 0.308 0 NDVI/℃;夏季没有特别突出的敏感中心,选择与计算春季相同格点数的高值中心,其敏感性为 0.248 0 NDVI/℃;秋季敏感中心在亚洲东部高纬度地区,相同格点大小范围(110°~140° E,55°~65°N)平均敏感性为 0.087 5 NDVI/℃.这种大尺度的NDVI-气温的关系及其敏感性非常稳定,并不随使用的NDVI的空间分辨率的改变而改变.  相似文献   

13.
The influence of climate change on the terrestrial vegetation health (condition) is one of themost significant problems of global change study. The vegetation activity plays a key role in the globalcarbon cycle. The authors investigated the relationship of the advanced very high resolution radiometer-normalized difference vegetation index (AVHRR-NDVI) with the large-scale climate variations on the inter-annual time scale during the period 1982-2000 for the growing seasons (April to October). A singular valuedecomposition analysis was applied to the NDV! and surface air temperature data in the time-domain todetect the most predominant modes coupling them. The first paired-modes explain 60.9%, 39.5% and 24.6%of the squared covariance between NDV! and temperature in spring (April and May), summer (June andAugust), and autumn (September to October), respectively, which implies that there is the highest NDVIsensitivity to temperature in spring and the lowest in autumn. The spatial centers, as revealed by themaximum or minimum vector values corresponding to the leading singular values, indicate the highsensitive regions. Only considering the mode 1, the sensitive center for spring is located in westernSiberia and the neighbor eastern Europe with a sensitivity of about 0.308 0 NDVI/℃. For summer, thereare no predominantly sensitive centers, and on average for the relatively high center over 100^o-120^o E by 45^o-60^o N, the (110^o-140^o E,55^o-65^oN)sitivity is 0.248 0 NDVI/℃. For autumn, the center is located over the high latitudes ofeastern Asia (110^o-140^o E, 55^o-65^o N), and the sensitivity is 0.087 5 NDVI/℃. The coherent patters asrevealed by the singular decomposition analysis remain the same when coarser resolution NDVI data wereused, suggesting a robust and stable climate/vegetation relationship.  相似文献   

14.
The influence of climate change on the terrestrial vegetation health (condition) is one of the most significant problems of global change study. The vegetation activity plays a key role in the global carbon cycle. The authors investigated the relationship of the advanced very high resolution radiometer-normalized difference vegetation index (AVHRR-NDVI) with the large-scale climate variations on the inter-annual time scale during the period 1982-2000 for the growing seasons (April-October). A singular value decomposition analysis was applied to the NDVI and surface air temperature data in the time-domain to detect the most predominant modes coupling them. The first paired-modes explain 60.9%, 39.5% and 24.6% of the squared covariance between NDVI and temperature in spring (April-May), summer (June-August), and autumn (September-October), respectively, which implies that there is the highest NDVI sensitivity to temperature in spring and the lowest in autumn. The spatial centers, as revealed by the maximum or minimum vector values corresponding to the leading singular values, indicate the high sensitive regions. Only considering the mode 1, the sensitive center for spring is located in western Siberia and the neighbor eastern Europe with a sensitivity of about 0.308 0 NDVI/℃. For summer, there are no predominantly sensitive centers, and on average for the relatively high center over 1000-1200 E by 450-600 N, the sensitivity is 0.248 0 NDVI/℃. For autumn, the center is located over the high latitudes of eastern Asia (1100-1400 E, 550-650 N), and the sensitivity is 0.087 5 NDVI/℃. The coherent patters as revealed by the singular decomposition analysis remain the same when coarser resolution NDVI data were used, suggesting a robust and stable climate/vegetation relationship.  相似文献   

15.
基于全球库存建模和制图研究(GIMMS)第三代归一化植被指数(NDVI3g)产品和气象数据,利用一元线性回归模型、偏相关分析和显著性T检验,分析了1982—2015年青藏高原高寒草甸和高寒草原春、夏、秋季NDVI时空演变的差异特征及其与气候因子的关系。研究表明:(1)高寒草甸春、夏、秋季NDVI整体均无明显变化趋势,高寒草原春季和夏季NDVI均显著增加,变化速率均为0.0002/a(P<0.05),而秋季NDVI变化趋势不明显。(2)空间上,高寒草甸春季NDVI显著增加面积占比31.95%,集中分布在祁连山区和三江源区,夏季NDVI显著增加的面积占比32.12%,主要分布在祁连山区、三江源地区和一江两河流域;秋季NDVI显著增加的比例为24.59%,集中分布于祁连山区和一江两河流域。高寒草原春、夏、秋季NDVI显著增加的区域均集中分布于西藏自治区北部和柴达木盆地南缘地区,分别占比44.20%、43.09%和37.99%。(3)高寒草甸春季和秋季NDVI均与气温显著正相关,偏相关系数达0.41(P<0.05)和0.23(P<0.05),夏季NDVI与气温、降水量和太阳辐...  相似文献   

16.
陈春波  李刚勇  彭建 《生态学报》2023,43(4):1537-1552
在新疆开展长时间序列的草地监测,分析草地生长的时空变化特征,有利于草地环境压力分析和草地生态健康预测。以NOAA-AVHRR NDVI为数据源,采用最大值合成、一元回归分析与相关性分析,分别在年际尺度和多个空间尺度(全疆、南北疆与各地区及其11种草地类型)上探讨了1981—2018年新疆草地归一化植被指数(NDVI)时空特征及其对气温、降水的响应。结果表明:(1)1981—2018年,新疆草地NDVI多年均值0.326,变化范围0.259—0.386,具有轻微年际波动特征;(2)北疆、南疆草地NDVI均表现为轻微增加趋势;全疆占草地总面积41%的区域NDVI呈显著增加趋势,9%为显著减少区域,北疆草地NDVI显著增加的面积是南疆的1.7倍;(3)由于垂直地带性及区域差异,新疆草地NDVI由山区向盆地的荒漠降低;北疆草地NDVI是南疆1.4倍,总体上北疆各地区草地NDVI高于南疆各地区;(4)草地类型植被NDVI对降水的显著响应高于气温,其中温性荒漠类、温性荒漠草原类与温性草原类草地NDVI对降水变化的响应明显高于其余草地类型,降水对草地NDVI的影响更为显著,表明降水引起的地表水分变化...  相似文献   

17.
延安北部丘陵沟壑区植被指数变化及其与气候的关系   总被引:8,自引:0,他引:8  
利用GIMMS和SPOT两种归一化植被指数(NDVI)数据和气候资料,分析延安北部丘陵沟壑区1982—2007年植被覆盖的历史演变及其与气候因子的关系。结果表明:(1)延安北部丘陵沟壑区植被覆盖状况26a来尽管有波动起伏,但是整体在持续转好,年平均NDVI增加了14.2%。夏季的NDVI值最高、波动起伏最大,其次是秋季,春、秋季的NDVI年际变化具有明显的上升趋势。各季NDVI与年NDVI均有相关关系,春、秋季NDVI与年NDVI相关显著。NDVI年内变化曲线为单峰型,春季NDVI缓慢增加,秋季NDVI降低速度比较快。(2)年平均NDVI与年温度相关不明显,夏、秋、冬三季NDVI与同期温度相关也不明显,只有春季平均NDVI与该季温度相关显著。3—4月份温度对植被的影响呈正相关,温度越高,返青生长越快;初夏6—7月份,温度对植被生长有滞后影响,前期温度与后期NDVI为负相关。降水量是引起NDVI年际波动的影响因子之一,年降水量与当年7月和9月份NDVI相关,决定了一年植被最为旺盛时的好坏。月降水量对NDVI影响具有滞后性,上年9月份降水影响翌年4—6月份的NDVI,6月和7月份NDVI受当月和前期降水影响。(3)1999年以来,延安北部丘陵沟壑区植被覆盖快速上升,除与降水增多有关外,非气候因素中生态保护和环境建设等人为措施,如植树造林、封山禁牧等封育措施是导致植被显著增加的重要原因。  相似文献   

18.
准确评估地上生物量对优化草地资源管理和理解草地碳、水和能量平衡具有重要意义。该文通过近地遥感归一化植被指数(NDVI)构建最优经验模型, 对青藏高原高寒草地地上生物量进行估算。该文利用2018-2019年5-9月野外实测的地上生物量和植物冠层光谱仪(RapidSCAN)测定的NDVIRS数据, 构建了生长季不同时期地上生物量的估算模型; 并结合2018年NetCam物候相机测定的NDVICam时间序列数据, 实现地上生物量季节动态的模拟。主要结果: (1) NDVICamNDVIRS与地上生物量具有相似的单峰型季节变化格局, 但NDVI峰值出现的时间(7月)较地上生物量(8月)更早; (2)基于NDVI的生物量估算最优经验模型在5、7和9月是幂函数, 在6和8月是二次多项式, 估算精度为0.29-0.77; (3)基于NDVICam时间序列数据, 生长季不同时期建模(R2 = 0.91)较单一时期(9月)建模(R2 = 0.49)对地上生物量季节动态的估算更为准确。这些结果表明, 近地遥感是估算高寒草地植物地上生物量的有效手段, 开展季节性植物生长调查将有助于准确评估草地资源。  相似文献   

19.
Aim Applying water‐energy dynamics and heterogeneity theory to explain species richness via remote sensing could allow for the regional characterization and monitoring of vegetation community assemblages and their environment. We assess the relationship of multi‐temporal normalized difference vegetation index (NDVI) to plant species richness in vegetation communities. Location California, USA. Methods Sub‐regions containing species inventories for chaparral, coastal sage scrub, foothill woodland, and yellow pine forest communities were intersected with a vegetation community map and an AVHRR NDVI time series for 1990, 1991, 1992, 1995 and 1996. Principal components analysis reduced the AVHRR data to three variables representing the sum and temporal trajectories of NDVI within each community. A fourth variable representing heterogeneity was tested using the standard deviation of the first component. Quadratic forms of these variables were also tested. Species richness was analysed by stepwise regression. Results Chaparral, coastal sage scrub, and yellow pine forest had the best relationships between species richness and NDVI. Richness of chaparral was related to NDVI heterogeneity and spring greenness (r2 varied between 0.26 and 0.62 depending on year of NDVI data). Richness of coastal sage scrub was nonlinearly related to annual NDVI and heterogeneity (r2 0.63–0.81), with peak richness at intermediate values. Foothill woodland richness was related to heterogeneity in a monotonic curvilinear fashion (r2 0.28–0.35). Yellow pine forest richness was negatively related to spring greenness and positively related to heterogeneity (r2 0.40–0.46). Main Conclusions While NDVI's relationship to species richness varied, the selection of NDVI variables was generally consistent across years and indicated that spatial variability in NDVI may reflect important patterns in water‐energy use that affect plant species richness. The principal component axis that should correspond closely with annual mean NPP showed a less prominent role. We conclude that plant species richness for coarse vegetation associations can be characterized and monitored at a regional scale and over long periods of time using relatively coarse resolution NDVI data.  相似文献   

20.
基于地理探测的黄土高原植被生长对气候的响应   总被引:1,自引:0,他引:1  
为探讨黄土高原不同植被类型对气候变化的响应机制,以2002-2019年黄土高原归一化植被指数(NDVI)数据为基础,利用趋势分析、Hurst指数、地理探测器等方法分析不同植被类型NDVI变化趋势及其与气象因子的关系.结果 表明:2002-2019年,黄土高原不同植被类型NDVI以增长趋势和同向中持续性为主,仅栽培植被在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号