首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While it is known that all chromosomes are susceptible to meiotic nondisjunction, it is not clear whether all chromosomes display the same frequency of nondisjunction. By use of multicolor FISH and chromosome-specific probes, the frequency of disomy in human sperm was determined for chromosomes 1, 2, 4, 9, 12, 15, 16, 18, 20, and 21, and the sex chromosomes. A minimum of 10,000 sperm nuclei were scored from each of five healthy, chromosomally normal donors for every chromosome studied, giving a total of 418,931 sperm nuclei. The mean frequencies of disomy obtained were 0.09% for chromosome 1; 0.08% for chromosome 2; 0.11% for chromosome 4; 0.14% for chromosome 9; 0.16% for chromosome 12; 0.11% for chromosomes 15, 16, and 18; 0.12% for chromosome 20; 0.29% for chromosome 21; and 0.43% for the sex chromosomes. Data for chromosomes 1, 12, 15, and 18, and the sex chromosomes have been published elsewhere. When the mean frequencies of disomy were compared, the sex chromosomes and chromosome 21 had significantly higher frequencies of disomy than that of any other autosome studied. These results corroborate the pooled data obtained from human sperm karyotypes and suggest that the sex chromosome bivalent and the chromosome 21 bivalent are more susceptible to nondisjunction during spermatogenesis. From these findings, theories proposed to explain the variable incidence of nondisjunction can be supported or discarded as improbable.  相似文献   

2.
Fluorescent in situ hybridization (FISH) in decondensed sperm nuclei has been used to determine the percentage of normal/balanced or unbalanced spermatozoa produced by an inv(6)(p23q25) carrier, and the possible interchromosomal effect (ICE) of the reorganized chromosomes on other chromosome pairs. A dual color FISH with specific subtelomeric probes for the 6p and 6q regions was performed to determine the segregation pattern of the inverted chromosome. ICE on chromosomes 18, X and Y was assessed using a triple color FISH assay. In the segregation analysis 10,049 spermatozoa were analyzed, and only 45.7% of them were normal/balanced. The high number of unbalanced gametes in our carrier could be the consequence of the large size of the inverted segment. This situation could facilitate the formation of an inversion loop, where formation of an odd number of chiasmata (usually one) result in the production of 50% normal and 50% unbalanced sperm. Furthermore, an increase in the disomy rate for chromosome 6 was also observed. In the screening for ICE, 10,007 spermatozoa were analyzed. The disomy rate for the sex chromosomes and chromosome 18 were not significantly different from those found in our controls, suggesting no evidence of interchromosomal effects in this patient. The use of FISH in decondensed sperm nuclei has proved once more to be an accurate approach to determine the chromosome anomalies in sperm and could help to better establish a reproductive prognosis.  相似文献   

3.
We have analyzed 140 sperm chromosome complements from a subfertile man heterozygous for an inv(7)(p13;q36). Seventy-five percent of the chromosome complements were not recombinant: 37.9% contained the normal chromosome 7, and 37.1% contained the inverted chromosome 7. Twenty-five percent of the 140 were recombinant: 7.1% carried a recombinant chromosome 7 with a duplication p and deletion q, 17.1% carried a recombinant chromosome 7 with a duplication q and deletion p, and 0.7% carried both recombinant chromosomes. The frequency of structural chromosomal aberrations unrelated to the inversion was 11.4%, and the frequency of aneuploidy was 2.9%. Both frequencies were not significantly different from those in control donors. Two sperm complements with a second independent, contiguous inversion involving one of the original breakpoints (q36) were observed (1.4%). The risk of producing chromosomally abnormal offspring or spontaneous abortions would be 34.3%. The proportion of X-bearing and Y-bearing sperm was 46.8% and 53.2%, respectively, not significantly different from the expected 1:1 ratio.  相似文献   

4.
Acrocentric chromosomes may be particularly predisposed to nondisjunction because of the frequency of trisomy for these chromosomes in human spontaneous abortions and liveborns. Studies of aneuploidy in human sperm have provided data on only a few acrocentric chromosomes, with evidence that chromosome 21 has a significantly increased frequency of disomy. To determine whether other acrocentric chromosomes have a higher frequency of nondisjunction or if chromosome 21 is anomalous, disomy frequencies for chromosomes 13 and 22 were studied by fluorescence in situ hybridization (FISH) analysis of 51,043 sperm nuclei from five normal men for whom the frequency of disomy for chromosomes 15 and 21 was known. The mean frequency of disomy for chromosome 13 (0.19%) did not differ significantly from that for other autosomes; however, the frequency of disomy 22 (1.21%) was significantly elevated (P < 0.001, Mantel-Haenszel chi(2) test). The G-group chromosomes (Nos. 21 and 22) also showed a significantly increased frequency of disomy (0. 75%) compared to acrocentric D-group chromosomes (viz., chromosomes 13 and 15; 0.15%) (P < 0.001, Mantel-Haenszel chi(2) test) and other autosomes (chromosomes 1, 2, 4, 9, 12, 13, 15, 16, 18, and 20; 0. 13%) studied in the same men (P < 0.001, Mantel-Haenszel chi(2) test).  相似文献   

5.
Fluorescence in situ hybridization (FISH) with single-color chromosome-specific probes was used to study the rates of disomy for chromosome 1, 16, X, and Y in sperm of fertile and infertile subjects. Diploidy rates were studied using a two-color cocktail of probes for chromosomes 17 and 18 in the same sperm samples. Two-color methodology was not available at the outset of the study. A total of 450,580 spermatozoa were studied from 21 subjects (9 fertile, 12 infertile). Significant differences were observed in the disomy rates between chromosomes with the highest frequency observed for chromosome 16 (0.17%) and the lowest for the Y chromosome (0.10%). No differences were observed between fertile and infertile subjects for either diploidy or disomy. Total disomy rates for chromosomes 1, 16, X and Y ranged from 0.34% to 0.84% among infertile subjects, and 0.32% to 0.61% among fertile subjects. Our data suggest that generalized aneuploidy in sperm is not a major contributor to unexplained infertility.  相似文献   

6.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

7.
Cigarette smoking and aneuploidy in human sperm   总被引:14,自引:0,他引:14  
Cigarette smoke contains chemicals which are capable of inducing aneuploidy in experimental systems. These chemicals have been shown to reach the male reproductive system, increasing oxidative DNA damage in human sperm and lowering semen quality. We have examined the association between smoking and aneuploid sperm by studying 31 Chinese men with similar demographic characteristics and lifestyle factors except for cigarette smoking. None of the men drank alcohol. These men were divided into three groups: nonsmokers (10 men), light smokers (< 20 cigarettes/day, 11 men), and heavy smokers (> or = 20 cigarettes/day, 10 men). There were no significant differences in semen parameters or in age across groups. Two multi-color fluorescence in situ hybridizations (FISH) were performed: two-color FISH for chromosomes 13 and 21, and three-color FISH for the sex chromosomes using chromosome 1 as an internal autosomal control for diploidy and lack of hybridization. The mean hybridization efficiency was 99.78%. The frequency of disomy 13 was significantly higher in light and heavy smokers than in non-smokers, while no significant differences in the frequency of disomy 21, X or Y were observed across groups. Significant inter-donor heterogeneity in every category of disomic sperm examined was found in both light and heavy smokers, while in nonsmokers only XY disomy showed significant inter-donor differences. Thus, we conclude that cigarette smoking may increase the risk of aneuploidy only for certain chromosomes and that men may have different susceptibilities to aneuploidy in germ cells induced by cigarette smoking. Mol. Reprod. Dev. 59: 417-421, 2001.  相似文献   

8.
Renée Martin 《Chromosoma》1998,107(6-7):523-527
Our studies of human sperm karyotypes and interphase sperm analyzed by fluorescence in situ hybridization (FISH) have both yielded estimates of disomy frequencies of approximately 0.1% per chromosome with an overall aneuploidy frequency in human sperm of approximately 5%–6%. However, the distribution of aneuploidy in sperm is not even, as our data from sperm karyotypes and multicolour FISH analyses both demonstrate a significant increase in the frequency of aneuploidy for chromosome 21 and the sex chromosomes. We have studied men at increased risk of sperm chromosomal abnormalities including cancer patients and infertility patients. Testicular cancer patients were studied before and 2–13 years after chemotherapy (CT) with BEP (bleomycin, etoposide, cisplatin). Sperm karyotype analysis on 788 sperm demonstrated no significant difference in the frequency of numerical or structural chromosomal abnormalities post-CT vs pre-CT. Similarly, multicolour FISH analysis for chromosomes 1, 12, XX, YY and XY in 161,097 sperm did not detect any significant differences in the frequencies of disomy before and after treatment. However, recent evidence has suggested a significant increase in the frequency of disomy and diploidy during CT. We have found that infertile men, who would be candidates for intracytoplasmic sperm injection, have an increased frequency of chromosomally abnormal sperm karyotypes. Also, FISH analysis for chromosomes 1, 12, 13, 21, XX, YY and XY in 255,613 sperm demonstrated a significant increase in chromosomes 1, 13, 21, and XY disomy in infertile men compared with control donors. Received: 4 July 1998; in revised form: 7 September 1998 / Accepted: 8 September 1998  相似文献   

9.
To examine interindividual differences in sperm chromosome aneuploidy, repeated semen specimens were obtained from a group of ten healthy men, aged 20-21 at the start of the study, and analyzed by multi-color fluorescence in situ hybridization (FISH) analysis to determine the frequencies of sperm aneuploidy for chromosomes X, Y, 8, 18 and 21 and of diploidy. Semen samples were obtained three times over a five-year period. Statistical analysis examining the stability of sperm aneuploidy over time by type and chromosome identified two men who consistently exhibited elevated frequencies of sperm aneuploidy (stable variants): one with elevated disomy 18 and one with elevated MII diploidy. Differences among frequencies of aneuploidy by chromosome were also seen. Overall, disomy frequencies were lower for chromosome X, 8 and 18 than for chromosomes 21 or Y and for XY aneuploidy. The frequency of chromosome Y disomy did not differ from XY sperm frequency. Also, the frequency of meiosis I (XY) and II (YY + XX) sex chromosome errors did not differ in haploid sperm, but the frequency of MII errors was lower than MI errors in diploid sperm. Frequencies of sperm aneuploidy were similar between the first sampling period and the second, two years later. However, the frequency of some types of aneuploidy (XY, disomy Y, disomy 8, total autosomal disomies, total diploidy, and subcategories of diploidy) increased significantly between the first sampling period and the last, five years later, while others remained unchanged (disomy X, 21 and 18). These findings confirm inter-chromosome differences in the frequencies of disomy and suggest that some apparently healthy men exhibit consistently elevated frequencies of specific sperm aneuplodies. Furthermore, time/age-related changes in sperm aneuploidy may be detected over as short a period as five years in a repeated-measures study.  相似文献   

10.
The frequency of aneuploid sperm was assessed by fluorescence in situ hybridisation (FISH) in a 47,XYY male previously studied by sperm karyotyping. A total of 20,021 sperm were studied: 10,017 by two-colour FISH for chromosomes 13 and 21 and 10,002 by three-colour FISH for the sex chromosomes using chromosome 1 as an autosomal control for diploidy and lack of hybridisation. Results were compared with more than 500,000 sperm from 18 normal men. The frequencies of X-bearing (49.4%) and Y-bearing sperm (49.8%) were not significantly different from 50% as shown in our sperm karyotyping study. There was no significant increase in the frequency of diploid sperm compared with control donors. There was a significant increase in the frequency of disomy for chromosome 13 (p < 0.0001) and XY disomy (p = 0.0008) compared with control donors. However, since the frequency of disomy was 0.40% for chromosome 13 and 0.55% for XY disomy, it is not surprising that these increases were not discovered previously in our analysis of 75 sperm karyotypes. Our results suggest that the extra Y chromosome is eliminated during spermatogenesis in the majority of cells but that there may be a small but significant increase in the frequency of aneuploid sperm in these men.  相似文献   

11.
Human sperm chromosomes were studied in a man heterozygous for a pericentric inversion of chromosome 3(p25q21). The pronuclear chromosomes were analyzed after in vitro penetration of golden hamster eggs. A total of 144 sperm were examined: 69.2% were chromosomally balanced and 30.8% were recombinant. Of the balanced complements, the proportion with a normal chromosome 3 (37.6%) was approximately equal to the proportion with an inverted 3 (31.6%). Of the recombinant complements, the proportion of sperm with a duplication q/deletion p (17.3%) was approximately equal to the reciprocal event of duplication p/deletion q (13.5%). The recombinant chromosome 3 with a duplication q and deletion p has been observed in several abnormal children, but the duplication p/deletion q has never been reported. My results demonstrate that both recombinant chromosomes are produced as expected from an unequal number of crossovers within an inversion loop. In all likelihood the duplication p/deletion q chromosome is an early embryonic lethal because of the amount of genetic material deleted. The proportions of X-bearing (48.9%) and Y-bearing sperm (51.1%) were not significantly different from the expected 1:1 ratio. There was no evidence for an interchromosomal effect. Of the three inversions studied by human sperm chromosome analysis, recombinant chromosomes have been observed only in this case.  相似文献   

12.
With increasing availability of drugs for impotence and advanced reproductive technologies for the treatment of subfertility, more men are fathering children at advanced ages. We conducted a study of the chromosomal content of sperm of healthy men aged 24-57 years to (a) determine whether father's age was associated with increasing frequencies of aneuploid sperm including XY, disomy X, disomy Y, disomy 21, and sperm diploidy, and (b) examine the association between the frequencies of disomy 21 and sex-chromosomal aneuploidies. The study group consisted of 38 fathers of boys with Klinefelter syndrome (47, XXY) recruited nationwide, and sperm aneuploidy was assessed using multicolor X-Y-21 sperm FISH ( approximately 10,000 sperm per donor). Paternal age was significantly correlated with the sex ratio of sperm (Y/X; P=.006) and with the frequency of XY sperm (P=.02), with a clear trend with age by decades (P<.006). Compared with fathers in their 20s (who had an average frequency of 7.5 XY sperm per 10,000), the frequencies of XY sperm were 10% higher among fathers in their 30s, 31% higher among those in their 40s, and 160% higher among those in their 50s (95% CI 69%-300%). However, there was no evidence for age effects on frequencies of sperm carrying nullisomy sex; disomies X, Y, or 21; or meiosis I or II diploidies. The frequencies of disomy 21 sperm were significantly associated with sex-chromosomal aneuploidy (P=.04)-in particular, with disomy X (P=.004), but disomy 21 sperm did not preferentially carry either sex chromosome. These findings suggest that older fathers produce higher frequencies of XY sperm, which may place them at higher risk of fathering boys with Klinefelter syndrome, and that age effects on sperm aneuploidy are chromosome specific.  相似文献   

13.
The incidence of aneuploidy was estimated for chromosomes 8, 9, 13, 16, and 21 in mature human spermatozoa by primed in situ (PRINS) labeling technique. This method allows us to perform a chromosome-specific detection by in situ annealing of a centromeric specific primer. A dual color PRINS protocol was adapted to human sperm. The decondensation and the denaturation of sperm nuclei were simultaneously performed by 3-M NaOH treatment. Double labeling of spermatozoa was obtained in <2 h. A total of 96,292 sperm nuclei were analyzed by two independent observers. The estimates of disomy were 0.31% for chromosome 8, 0.28% for chromosome 9, 0.28% for chromosome 13, 0.26% for chromosome 16, and 0.32% for chromosome 21. These homogeneous findings suggest an equal distribution of aneuploidies among autosomal chromosomes in males.  相似文献   

14.
Fluorescence in situ hybridization (FISH) was performed on human interphase sperm nuclei to determine the utility of this technique for aneuploidy detection. Repetitive DNA sequences specific for chromosomes 1, 12 and X were biotinylated and hybridized with mature sperm, which had been treated with cetyltrimethylammonium bromide and dithiothreitol to render them accessible to the probes. Detection of bound probe was accomplished with fluoresceinated avidin and antiavidin. For each of the chromosomes studied, chromosome number was determined by counting the fluorescent signals, representing hybridized regions, within the sperm nuclei. The frequencies for disomy, that is for nuclei containing two signals, for chromosomes 1, 12 and X were 0.06%, 0.04% and 0.03%, respectively. The congruence of these results with those determined by the cross-species hamster oocyte-human sperm assay, and the high efficiency of hybridization indicate that FISH is a sensitive and reliable tool for aneuploidy detection in human sperm.  相似文献   

15.
Double fluorescence in situ hybridization (FISH) was used to detect sex chromosomes in decondensed human sperm nuclei. Biotinylated X chromosome specific (TRX) and digoxigenin-labeled Y chromosome specific (HRY) probes were simultaneously hybridized to sperm preparations from 12 normal healthy donors. After the hybridization, the probes were detected immuno-cytochemically, using two different and independent affinity systems. Ninety-six percent of the 12,636 sperm showed fluorescent labeling, of which 47.4% were haploid X and 46.8% were haploid Y. A frequency of 0.46% of XX-bearing sperm (0.28% disomic, 0.18% diploid) and 0.38% YY-bearing sperm (0.21% disomic, 0.17% diploid) was found. The overall proportions of X- and Y-bearing sperm in the ejaculates were 47.9% and 47.2%, respectively, which was not significantly different from the expected 50:50 ratio. In addition 0.21% of cells appeared to be haploid XY-bearing sperm, 0.62% were diploid XY-bearing cells, and 0.05% of cells were considered to be tetraploid cells. The application of double FISH to human sperm using X-chro-mosome and Y-chromosome probes has allowed a more accurate assessment of the sex chromosal complements in sperm than single FISH method and quinacrine staining for Y-bodies. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Many studies have been published establishing the background frequencies of disomic and diploid sperm in normal men by fluorescence in situ hybridization (FISH) analysis, with highly significant variance among the reports. Besides interdonor heterogeneity and differences in the experimental protocols used, the question of inherent differences in chromosome malsegregation and meiotic arrest among different geographic and ethnic groups of donors has been raised. In this study, multicolor FISH analysis was carried out on semen samples from 10 nonsmoking, nondrinking Chinese men from the People's Republic of China. The results were compared to FISH data on 10 nonsmoking, nondrinking Canadians under the same experimental conditions, in the same laboratory. A total of 200,497 sperm was scored in the Chinese donors and compared to 202,320 sperm from Canadian donors. Approximately 10,000 sperm per chromosome probe per donor were analyzed. The mean hybridization efficiency was 99.99%. The frequencies of X-bearing and Y-bearing sperm were not significantly different from the expected 50% for each individual and for the combined data from all donors (49.73% vs. 49.46%, P = 0.3946). The mean disomy frequencies (range) were 0.07% (0.02%-0.12%) for chromosome 13, 0.18% (0.09%-0.19%) for chromosome 21, 0.05% (0. 01%-0.09%) for 24,XX, 0.02% (0.01%-0.06%) for 24,YY, and 0.29% (0. 13%-0.49%) for 24,XY. The mean diploidy frequency (range) was 0.38% (0.22%-0.73%) for 13-21 hybridizations and 0.32% (0.07%-0.70%) for XY hybridizations. Highly significant interdonor heterogeneity was found for diploidy (P = 0.0000) and for XY disomy (P = 0.0011), but no age effect was observed in any category of disomic or diploid sperm. The data reported here show no marked differences in disomy and diploidy frequencies between the mainland Chinese and Canadian groups, if donor heterogeneity is taken into account.  相似文献   

17.
Analysis of sperm aneuploidy in 11 healthy men using two-or three-color FISH permitted to determine the average frequency of disomy for chromosomes 13 and 21 (0.11% and 0.2%, respectively), disomy for chromosome 18 (0.05%) and to reveal gonosomal aneuploidy variants and their frequency. The frequency of XX disomy was 0.04%; XY, 0.17%; YY, 0.06%; and gonosomal nullisomy, 0.29%. We assessed the frequency of meiotic nondisjunction of 13, 21, 18, X, and Y chromosomes and the frequency of XX, XY, and YY diploid spermatozoa. The XY variant prevailed in gonosomal aneuploidy and diploidy and was associated with abnormal chromosomal segregation in meiotic anaphase I. The contribution of human sperm chromosomal imbalance to early embryonic lethality and to some forms of chromosomal abnormalities in the off-spring is discussed.  相似文献   

18.
Human sperm chromosome studies in a reciprocal translocation t(2;5)   总被引:7,自引:2,他引:5  
Summary Sperm chromosome complements have been studied in a man heterozygous for a reciprocal translocation t(2;5)(p11;q15). Human sperm chromosomes were obtained after fertilization of zona-free hamster eggs. A total of 75 human sperm metaphases were analysed. Of the complements studied, 59 (78.6%) resulted from a 2:2 segregation and 16 (21.3%) from a 3:1 segregation, 4:0 segregation was not observed. Our results indicate that at least 36% of sperm complements were unbalanced with respect to the translocation. The frequency of other chromosome anomalies unrelated to the translocation was 16%.  相似文献   

19.
The objective of this research was to develop chromosome-specific probes for use in evaluating aneuploidy in boar spermatozoa through the application of fluorescence in situ hybridization (FISH) technology. A multicolor FISH method was developed to detect aneuploidy in the sperm of boars using DNA probes specific for small regions of chromosomes 1, 10, and Y. The average frequencies of sperm with disomy for chromosomes 1, 10, and Y were 0.075%, 0.067%, and 0.094%, respectively. The incidence of disomy did not differ significantly by chromosome. The average frequencies of diploidy were 0.177% for 1-1-10-10 and 0.022% for Y-Y-10-10. Thus, the incidence of overall diploidy (1-1-10-10) was significantly higher than that of disomy for the chromosomes examined (P < 0.01 for disomy of the autosomes and P < 0.05 for disomy of the Y chromosome). No significant age or breed effects on disomy and diploidy rates and no significant interindividual variations in disomy or diploidy were found. The observed level of numerical chromosome aberrations in pig sperm appear to be within the range of the baseline frequencies reported so far in men.  相似文献   

20.
Meiotic segregation products of carriers with pericentric inversion are very important for assessing the risk of unbalanced forms and appropriate genetic counseling. We investigated the incidence of recombinant and nonrecombinant products of chromosome 1 with pericentric inversion, in the sperm nuclei of the carrier by using triple color fluorescence in situ hybridization (FISH). The centromere specific and telomere specific probes for chromosome 1 were used. In the segregation analysis, 1,636 sperm nuclei were analyzed; 82.5% of the sperms were including normal or inverted chromosome 1, and the dup(p)/del(q) and del(p)/dup(q) recombinant products in sperm nuclei of our carrier were 8.7 and 7.3%, respectively. The number of recombinant products may be dependent on the formation of an inversion loop, which the number of the formation of chiasmata results in the different number of normal/balanced and recombinant products. The use of FISH, using different probe combination, in sperm nuclei has proved to be an accurate approach to determine the meiotic segregation patterns and could help to better establish a reproductive prognosis and genetic counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号