首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical ends of mammalian and other vertebrate chromosomes consist of tandemly repeated (TTAGGG)(n) hexamers, nucleating a specialized telomeric structure. However, (TTAGGG)(n) sequences can also occur at non-telomeric sites, providing important insights into karyotypic evolution. By fluorescence in situ hybridization (FISH) we studied the chromosomal distribution of (TTAGGG)(n) sequences in 16 bird species, representing seven different orders. Many species, in particular the ratites, display (TTAGGG)(n) hybridization signals in interstitial and centromeric regions of their macrochromosomes in addition to the typical telomeric signals. In some but not all species these non-telomeric sites coincide with C-band-positive heterochromatin. The retention and/or amplification of telomeric (TTAGGG)(n) repeats at interstitial and centromeric sites may indicate the fusion of ancestral chromosomes. Compared with the macrochromosomes, the microchromosomes of most species are enriched with (TTAGGG)(n) sequences, displaying heterogeneous hybridization patterns. We propose that this high density of (TTAGGG)(n) repeats contributes to the exceptionally high meiotic recombination rate of avian microchromosomes.  相似文献   

2.
We investigated the relationship between satellite copy number and chromosomal evolution in tuco-tucos (genus Ctenomys), a karyotypically diverse clade of rodents. To explore phylogenetic relationships among 23 species and 5 undescribed forms, we sequenced the complete mitochondrial cytochrome b genes of 27 specimens and incorporated 27 previously published sequences. We then used quantitative dot-blot techniques to assess changes in the copy number of the major Ctenomys satellite DNA (satDNA), named RPCS. Our analysis of the relationship between variation in copy number of RPCS and chromosomal changes employed a maximum-likelihood approach to infer the copy number of the satellite RPCS in the ancestors of each clade. We found that amplifications and deletions of RPCS were associated with extensive chromosomal rearrangements even among closely related species. In contrast, RPCS copy number stability was observed within clades characterized by chromosomal stability. This example reinforces the suspected role of amplification, deletion, and intragenomic movement of satDNA in promoting extensive chromosomal evolution.  相似文献   

3.
We present a strategy for the cloning of DNA sequences adjacent to the tandemly repeated DNA sequence (TTAGGG)n. Sequence analysis of 14 independently isolated clones revealed the presence of non-repetitive sequences immediately adjacent to or flanked by blocks of the simple repeat (TTAGGG)n. In addition, we provide sequence information on two previously undescribed tandemly repeated sequences, including a 9 bp repeat and a modification of the (TTAGGG)n repeat. Using different mapping approaches six sub-clones, free of the TTAGGG repeat, were assigned to a single human chromosome. Moreover, in situ hybridization mapped one of these subclones, G2 - 1H, definitively to the telomeric band on chromosome 4q. However, Bal 31 insensitivity suggests a location in a more subterminal region. All the (TTAGGG)n-adjacent unique sequences tested are highly conserved among primates but are not present in other mammalian species. Identification and mapping of TTAGGG-adjacent sequences will provide a refined insight into the genomic organization of the (TTAGGG)n repeat. The isolation of chromosome specific TTAGGG-adjacent sequences from subtelomeric regions of all human chromosomes will serve as important end points for the genetic maps and will be useful for the molecular characterization of chromosomal rearrangements involving telomeres.  相似文献   

4.
A highly repeated HpaI DNA family was revealed in Atlantic salmon (Salmo salar) and analyzed by Southern blotting and fluorescence in situ hybridization (FISH). In this report, we describe the nucleotide sequence, genomic structure and chromosomal localization of this HpaI repeat. This novel satellite appeared tandemly arrayed and located at centromeric areas of three acrocentric chromosome pairs as evidenced by FISH. The sequence was characterized by a high AT content (63%), a short consensus motif (A/T)(G/C)AAA(T/C) similar to other centromeric satellites motifs, and by short AT enriched stretches. The presence of this sequence in other salmonid species was also tested by Southern blot hybridization and used to analyze its evolution within this group.  相似文献   

5.
Madoqua kirkii, a miniature African antelope, is noted for extensive chromosomal variation that has been categorized in four distinct cytotypes (A-D). In this investigation, we analyzed the A cytotype (2n = 46, FN = 48) using a suite of molecular cytogenetic approaches that entailed (i) whole chromosome and subchromosomal painting by fluorescence in situ hybridization (FISH), (ii) the study of Madoqua centromeric-specific DNA derived from pooled DNA obtained from the centromeric regions of the acrocentric chromosomes, and (iii) DNA from the telomere:centromere junctions of tandemly fused chromosomes. DNA from these sources was used to probe for the persistence of interstitial satellite DNA and residual centromeric sequences in the tandem and centric fusion junctions by PCR and FISH. The analyses show centromeric sequences at two of the six tandem fusion junctions. These data, and those of hybrid specimens (A × B cytotypes) in conjunction with published information permitted an interpretation of the probable sequence of chromosomal rearrangements among the M. kirkii cytotypes. We discuss the findings in the context of chromosomal evolution in these antelopes, and the implications that these hold for ex-situ breeding programs of the species.  相似文献   

6.
Evaluating Quantitative Variation in the Genome of ZEA MAYS   总被引:7,自引:2,他引:5       下载免费PDF全文
Genomic diversity within the species Zea mays has been examined by measuring the variation in the repetitive component of the nuclear genome among North American inbred lines and varieties. This was done by preparing a set of clones of repetitive maize sequences that differ in function, molecular arrangement and multiplicity and then using these as probes for quantitative hybridization to DNA from various maize genotypes. The comparison showed that the majority of repeated sequences are markedly variable in copy number among the ten maize strains tested.The clone sample contained the rDNA and 5S genes, the major repeat of the chromosome knobs, sequences functioning as origins of DNA replication in yeast (ARS sequences) and randomly cloned sequences of unknown function and chromosomal location. The sequences ranged in reiteration frequency from 200 to greater than 10(5) copies and included both tandemly arrayed and dispersed repeats. The copy numbers were measured by hybridizing labeled cloned sequences to aliquots of high molecular weight genomic DNA that were applied to nitrocellulose filters through a slotted template (slot blotting). The hybridization signal on an autoradiogram occurred in a narrow band that could be scored reliably with a densitometer. This provided a rapid method of determining the abundance of particular repeated sequences in individual plants and plant populations. Using this technique, we found that the copy number of repeated sequences of all types generally varied among the strains by two- to threefold, although at least one sequence showed no detectable variation. In contrast to the variability found between strains, individuals within an inbred line or variety were found to be indistinguishable in terms of specific sequence multiplicity. Each genotype has a different pattern of copy numbers for the set of repeated sequence clones, and this pattern is characteristic of all individuals of a particular genotype. The data also show that the copy number of each sequence varies independently. No strains had uniformly high or low copy numbers for the entire set of probes.  相似文献   

7.
Here we report on the analysis of three rodent sibling species complexes belonging to the African genera Arvicanthis, Acomys and Mastomys. Using cytogenetic and molecular approaches we set out to investigate how karyotype and molecular evolution are linked in these muroid sibling species and, in particular, to what extent chromosomal changes are relevant to cladogenic events inferred from molecular data. The study revealed that each complex is characterized by a distinct pattern of karyotype evolution (karyotypic orthoselection), and a specific mutation rate. However we found that the general pattern may be considerably modified in the course of evolution within the same species complex (Arvicanthis, Acomys). This observation suggests that karyotypic orthoselection documented in numerous groups is not so much a reflection of selection of a definite type of chromosomal mutation, as suggested by the classical concept, but is due to genome structure of a given species. In particular, karyotypic change appears related to the quantity and chromosomal location of repeated sequences. The congruence between the chromosomal and molecular data shows that chromosomal changes are often valuable phylogenetic characters (Arvicanthis and Mastomys, but not Acomys). However, most importantly the approach underscores the value of incorporating both in order to gain a better understanding of complex patterns of evolution. Moreover, the fact that every cladogenetic event in Mastomys is supported by two pericentric inversions allowed us to hypothesize that genetic differentiation is initiated by the suppression of recombination within inverted segments, and that the accumulation of multiple pericentric inversions reinforces genetic isolation leading to subsequent speciation. Finally, the low sequence divergences distinguishing karyotypically distinct sibling species within Arvicanthis and Mastomys emphasizes the power of combining cytogenetic and molecular approaches for the characterization of unrecognized components of biodiversity.  相似文献   

8.
Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species diversity. The authors report the isolation and characterization of repetitive DNA sequences (pOs139) from Oryza sativa cuhivars "Zhaiyeqing". By Southern blot analysis, the authors discovered that pOs139 sequences were organized not only tandemly, but also highly specifc for the AA genome of Oryza genus. Sequence analysis revealed that the clone pOs139 contains a 355 bp repetitive unit. The genomic DNA of 29 Chinese common wild accessions, and 43 cultivated rice accessions, were analyzed by Southern blot with pOs139 as a probe. The results illustrated that there was significant difference in hybridization patterns between japonica and indica subspecies. Hybridization bands of indica subspecies were much more than those of japonica, and the Chinese common wild rice was similar to indica in hybridization patterns. The copy number estimated by dot blot hybridization analysis indicated that a considerable degree of variation existed among different accessions of O. sativa and the Chinese common wild rice. It is interesting to note that japonica subspecies contains relatively low copy numbers of pOs139-related repetitive DNA sequences, while the indica and Chinese common wild rice contain relatively high copy numbers.  相似文献   

9.
In this study, the occurrence of repeated DNA sequences in the chromosome of Mycobacterium tuberculosis was investigated systematically. By screening a M. tuberculosis lambda gt-11 gene library with labeled total chromosomal DNA, five strongly hybridizing recombinants were selected, and these contained DNA sequences that were present in multiple copies in the chromosome of M. tuberculosis. These recombinants all contained repeated sequences belonging to a single family of repetitive DNA, which shares homology with a previously described repeated sequence present in recombinant pPH7301. Sequences analysis of pPH7301 showed the presence of a 10-bp sequence that was tandemly repeated and invariably separated by 5-bp unique spacer sequences. Southern blot analysis revealed that the majority of the repeated DNA in M. tuberculosis is composed of this family of repetitive DNA. Because the 10-bp repeats are slightly heterogeneous in sequence, we designated this DNA as a major polymorphic tandem repeat, MPTR. The presence of this repeated sequence in various other mycobacterial species was investigated. Among the MPTR-containing mycobacterial species the chromosomal location of the repetitive DNA is highly variable. The potential use of this polymorphism in the epidemiology of mycobacterioses is discussed.  相似文献   

10.
Karyotypic fissioning theory has been put forward by a number of researchers as a possible driving force of mammalian evolution. Most recently, Giusto and Margulis (BioSystems, 13 (1981) 267–302) hypothesized that karyotypic fissioning best explains the evolution of Old World monkeys, apes, and humans. According to their hypothesis, hominoid karyotypes were derived from the monkey chromosome complement by just such such a fissioning event. That hypothesis is tested here by comparing the G-banded chromosomes of humans and great apes with eight species of Old World monkeys. Five submetacentric chromosomes between apes and monkeys have identical banding patterns and nine chromosomes share the same pericentric inversion. Such extensive karyological similarities are not in accodance with, or predicted by karyotypic fissioning. Apparently, karyotypic fissioning is an extremely uneconomical model of chromosomal evolution. The strong conservation of banding patterns sometimes involving the retention of identical chromosomes indicates that ancient linkages of genes have probably been maintained through many speciation events.  相似文献   

11.
Tandem-repetitive noncoding DNA: forms and forces   总被引:8,自引:1,他引:7  
A model of sequence-dependent, unequal crossing-over and gene amplification (slippage replication) has been stimulated in order to account for various structural features of tandemly repeated DNA sequences. It is shown that DNA whose sequence is not maintained by natural selection will exhibit repetitive patterns over a wide range of recombination rates as a result of the interaction of unequal crossing-over and slippage replication, processes that depend on sequence similarity. At high crossing-over frequencies, the nucleotide patterns generated in the simulations are simple and highly regular, with short, nearly identical sequences repeated in tandem. Decreasing recombination rates increase the tendency to longer and more-complex repeat units. Periodicities have been observed down to very low recombination rates (one or more orders of magnitude lower than mutation rate). At such low rates, most of the sequences contain repeats which have an extensive substructure and a high degree of heterogeneity among each other; often higher-order structures are superimposed on a tandem array. These results are compared with various structural properties of tandemly repeated DNAs known from eukaryotes, the spectrum ranging from simple-sequence DNAs, particularly the hypervariable mini-satellites, to the classical satellite DNAs, located in chromosomal regions of low recombination, e.g., heterochromatin.  相似文献   

12.
Genomic DNA of Crypthecodinium cohnii has been extracted in the presence of cetylmethylammonium bromide and hydrolysed by 13 restriction enzymes. No typical ladder-like pattern or isolated band of satellite sequences were found with any of these enzymes. A "mini" genomic DNA library had been made and screened by reverse hybridization to isolate highly repeated sequences. Seven such DNA fragments were sequenced. The copy number of one of them (Cc18), 226 bp long, was estimated at around 25,000, representing 0.06% of the total genome. Cc18 was found to be included in a higher fragment of 3.0 kb by Southern blot analysis after cleavage by PstI. This higher molecular weight fragment could be composed either of tandemly repeated Cc18 sequences, or by only one or a very low copy number of Cc18. In this latter case, these fragments, also repeated 25,000 times would represent 1 to 2% of the total genome. Genomic localization of Cc18 by in situ hybridization on squashed C. cohnii cells showed that it was widely distributed on the different chromosomes. All the chromosomes observed displayed Cc18 labeling, which appeared homogeneously distributed. The ability of Cc18 to be a specific molecular marker to distinguish sibling C. cohnii species is discussed.  相似文献   

13.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

14.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

15.
Long tandem arrays of complex repeat units in Chironomus telomeres.   总被引:8,自引:1,他引:7       下载免费PDF全文
A cloned 340-bp DNA fragment excised by EcoRI from the Chironomus pallividittatus genome has been localized to the telomeres by in situ hybridization as well as to connectives between telomeres. No hybridization was observed in other regions of the chromosomes. Another cloned EcoRI fragment, 525 bp long has also been studied. This represents a partial duplication of the 340-bp sequence. Genomic blot hybridization experiments show that the 340-bp sequence is a representative monomeric unit of tandemly repeated arrays which account for 1.2% of the Chironomus genome, on average 300 kb per telomere. The repeat unit contains two types of subrepeats each present twice per repeat unit. Northern blot hybridization experiments show that the telomere-associated sequences are transcribed into a discrete RNA species approximately 20 kb in size. The evolution of this telomere-associated DNA is discussed.  相似文献   

16.
Sequences from the ribosomal nuclear internal transcribed spacers (ITS) have been widely used to infer evolutionary hypotheses across a broad range of living organisms. Intraspecific sequence variation is assumed to be absent or negliable in most species, but few detailed studies have been conducted to assess the apportionment of ITS sequence variation within and between plant populations. Buxus balearica was chosen as a model species to assess the levels of infraspecific and intragenomic ITS variation in rare and endangered species occurring in disjunct populations around the Mediterranean basin. Intragenomic polymorphic sites were detected for western and eastern accessions of B. balearica and in two accessions of the sister species B. sempervirens. Overall, 19 different ribotypes were found in B. balearica after sequencing 48 clones, whereas 15 ribotypes were detected in 19 clones of B. sempervirens. The integrity and secondary structure stability of the ribosomal sequences suggest that they are not pseudogenes. The high number of ribotypes recovered through cloning suggested that some sequences could be chimeric or generated in vivo by partial homogenization through gene conversion or unequal crossing-over. Average sequence divergence among B. balearica clones was 0.768%, and the most divergent sequences differed by 1.62%. Available evidence does not suggest that B. balearica paralogues have been obtained from other extant Buxus species through interspecific hybridization. The presence of several ribosomal sequences in box implies that the molecular forces driving the concerted evolution of this multigene family are not fully operational in this genus. Phylogenetic analyses of cloned ITS sequences from B. balearica displayed very poor resolution and only two clades received moderate bootstrap support. Despite the marked intragenomic sequence divergence found, ribosomal data suggest a clear phylogeographic split in B. balearica between western and eastern accessions. The distinct, nonchimeric sequences that are postulated as being present in each biogeographic group suggest that box populations from Anatolia (eastern Mediterranean) are relict. [Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

17.
Two tandemly repeated DNA sequences of Gerbillus nigeriae (Rodentia) (GN1 and GN2) were isolated and characterized. Both share a 36 bp repeated unit, which includes a 20 bp motif also found in primate alphoid and other repeated DNAs. The localization of GN1 and GN2 sequences on metaphase chromosomes of three Gerbillus species, G. nigeriae, G. aureus and G. nanus, was studied by fluorescence in situ hybridization (FISH). In the G. nigeriae and G. aureus karyotypes, which were shown to possess large amounts of heterochromatin and to have undergone multiple rearrangements during evolution, both GN1 and GN2 sequences were observed at various chromosomal sites: centromeric, telomeric and intercalary. In contrast, the karyotypically stable G. nanus, which does not possess large amounts of heterochromatin and seems to be a more ancestral species, possesses only GN1 sequences, localized in the juxtacentromeric regions.  相似文献   

18.
Channid fishes, commonly referred to as “snakeheads”, are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.  相似文献   

19.
The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.  相似文献   

20.
L G Cook 《Génome》2000,43(2):255-263
Chromosome number reflects strong constraints on karyotype evolution, unescaped by the majority of animal taxa. Although there is commonly chromosomal polymorphism among closely related taxa, very large differences in chromosome number are rare. This study reports one of the most extensive chromosomal ranges yet reported for an animal genus. Apiomorpha Rübsaamen (Hemiptera: Coccoidea: Eriococcidae), an endemic Australian gall-inducing scale insect genus, exhibits an extraordinary 48-fold variation in chromosome number with diploid numbers ranging from 4 to about 192. Diploid complements of all other eriococcids examined to date range only from 6 to 28. Closely related species of Apiomorpha usually have very different karyotypes, to the extent that the variation within some species-groups is as great as that across the entire genus. There is extensive chromosomal variation among populations within 17 of the morphologically defined species of Apiomorpha indicating the existence of cryptic species-complexes. The extent and pattern of karyotypic variation suggests rapid chromosomal evolution via fissions and (or) fusions. It is hypothesized that chromosomal rearrangements in Apiomorpha species may be associated with these insects' tracking the radiation of their speciose host genus, Eucalyptus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号