首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomato plants (Lycopersicum esculentum Mill.) were grown for 21-days in a complete hydroponic nutrient solution including Fe3+-ethylenediamine-di(o-hydroxyphenylacetate) and subsequently switched to nutrient solution withholding Fe for 8 days to induce Fe stress. The roots of Fe-stressed plants reduced chelated Fe at rates sevenfold higher than roots of plants grown under Fe-sufficient conditions. The response in intact Fe-deficient roots was localized to root hairs, which developed on secondary roots during the period of Fe stress. Plasma membranes (PM) isolated by aqueous two-phase partitioning from tomato roots grown under Fe stress exhibited a 94% increase in rates of NADH-dependent Fe3+-citrate reduction compared to PM isolated from roots of Fe-sufficient plants. Optimal detection of the reductase activity required the presence of detergent indicating structural latency. In contrast, NADPH-dependent Fe3+-citrate reduction was not significantly different in root PM isolated from Fe-deficient versus Fe-sufficient plants and proceeded at substantially lower rates than NADH-dependent reduction. Mg2+-ATPase activity was increased 22% in PM from roots of Fe-deficient plants compared to PM isolated from roots of Fe-sufficient plants. The results localized the increase in Fe reductase activity in roots grown under Fe stress to the PM.  相似文献   

2.
We compared growth and the content of sugar, protein, and photosynthetic pigments, as well as chlorophyll fluorescence parameters in 15- and 27-day-old Chinese cabbage (Brassica chinensis L.) plants grown under a high-pressure sodium (HPS) lamps or a light source built on the basis of red (650 nm) and blue (470 nm) light-emitting diodes (LEDs) with a red to blue photon ratio of 7: 1. One group of plants was grown at a photosynthetic photon flux (PPF) level of 391 ± 24 μ mol/(m2 s) (normal level); the other, at a PPF level of 107 ± 9 μ mol/(m2 s) (low light). Plants of the third group were firstly grown at the low light and then (on the 12th day) transferred to the normal level. When grown at the normal PPF level, the plants grown under LEDs didn’t differ from plants grown under HPS lamps in shoot fresh weight, but they showed a lower root fresh and dry weights and the lower content of total sugar and sugar reserves in the leaves. No differences in the pigment content and photosystem II quantum yield were found; however, a higher Chl a/b ratio in plants grown under LEDs indicates a different proportion of functional complexes in thylakoid membranes. The response to low light conditions was mostly the same in plants grown under HPS lamps and LEDs; however, LED plants showed a lower growth rate and a higher nonphotochemical fluorescence quenching. In the case of the altered PPF level during growth, the plant photosynthetic apparatus adapted to new conditions of illumination within three days. Plants grown under HPS lamps at a constant normal PPF level and those transferred to the normal PPF level on the 12th day, on the 27th day didn’t differ in shoot fresh weight, but in plants grown under LEDs, the differences were considerable. Our results show that LED-based light sources can be used for plant growing. At the same time, some specific properties of plant photosynthesis and growth under these conditions of illumination were found.  相似文献   

3.
Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.  相似文献   

4.
Summary Bean and marigold plants were grown to maturity under several kinds of fluorescent lamps to evaluate the effects of spectral differences on development and reproduction. Six kinds of lamps were tested including five lamps that were used in closely related experiments on tomato seedling growth (Thomas and Dunn, 1967). Evaluation was by fresh- and dry-weight yields of immature and mature pods, and of vegetative tops of plants for bean; and by flowering and fresh-and dry-weight yields for marigold.Bean plants grown under two experimental lamps, Com I and IR III produced significantly higher fresh- and dry-weight yields of both mature and total pods than under Warm-white lamps. This effect could be attributed largely to the considerable energy emitted by the experimental lamps in the red and far-red, as compared to a larger emission in the green and blue for the Warm-white lamps. The differences in the yields for immature pods and vegetative portions of the mature tops were not significant.In a comparison of the effects of three experimental lamps with those of three commercial lamps on growth response of bean plants, the yields were in general higher for the experimental lamps, except for immature pods. The yields of vegetative tops were significantly greater for the 78/22 lamp over the yields for all other lamps. The larger proportion of red and far-red light emitted by the experimental lamps is again the probable cause of the higher yields with these lamps.Two sets of experiments on growth and flowering of marigold under various experimental and commercial lamps were largely inconclusive although there was some indication of beneficial effects by the experimental lamps.In general, the results with bean agree with those for tomato (Thomas and Dunn, 1967), in that best growth was obtained with a lamp high in red light emission, a moderate amount in the far-red, and very little in the blue part of the spectrum.This research was submitted by the senior author in partial fulfillment of the requirements for the M.S. degree in Botany at the University of New Hampshire.Published with the approval of the director of the New Hampshire Agricultural Experiment Station as Scientific Contribution No. 398. This study was part of the Northeast Regional Project, NE-35, Analysis of Northeastern Climatic Variables and Their Relationships to Plant Response.  相似文献   

5.
Mesembryanthemum crystallinum L. plants were grown from seeds in perlite. At the age of 4 weeks (juvenile plants) or 6 weeks (adult plants), they were transferred on nutrient media with different Fe3+ content brought in as Fe2(SO4)3—EDTA complex (pH 6.0): control, iron deficit, and iron “excess”. Adult plants grown in media differing in iron content were subjected to salinity (300 mM NaCl) during the last 8 days of growth. Biochemical analyses were performed after plant fixation in liquid nitrogen; simultaneously, the samples for electron microscopy were taken. Different content of available Fe3+ in medium, especially under salinity conditions, changed sharply the content of chlorophyll and proline, the rate of lipid peroxidation, the level of H2O2, the activities of antioxidant enzymes in the leaves and roots, the number and sizes of plastoglobules, and ferritin formation in plastids. Joint action of salinity and iron deficit enhanced oxidative stress development, whereas iron excess hampered oxidative reaction development, reduced the rate of lipid peroxidation, and increased the chlorophyll content. At iron excess, plastoglobule lysis in plastids did not occur, their number and sizes increased, and ferritin deposits appeared, whereas the latter were absent at iron deficit.  相似文献   

6.
We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m?2 s?1) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.  相似文献   

7.
Red light-emitting diodes (LEDs) are a potential light sourcefor growing plants in spaceflight systems because of their safety,small mass and volume, wavelength specificity, and longevity.Despite these attractive features, red LEDs must satisfy requirementsfor plant photosynthesis and photomorphogenesis for successfulgrowth and seed yield. To determine the influence of galliumaluminium arsenide (GaAIAs) red LEDs on wheat photomorphogenesis,photosynthesis, and seed yield, wheat (Triticum aestivum L.,cv. ‘USU-Super Dwarf’) plants were grown under redLEDs and compared to plants grown under daylight fluorescent(white) lamps and red LEDs supplemented with either 1% or 10%blue light from blue fluorescent (BF) lamps. Compared to whitelight-grown plants, wheat grown under red LEDs alone demonstratedless main culm development during vegetative growth throughpreanthesis, while showing a longer flag leaf at 40 DAP andgreater main culm length at final harvest (70 DAP). As supplementalBF light was increased with red LEDs, shoot dry matter and netleaf photosynthesis rate increased. At final harvest, wheatgrown under red LEDs alone displayed fewer subtillers and alower seed yield compared to plants grown under white light.Wheat grown under red LEDs+10% BF light had comparable shootdry matter accumulation and seed yield relative to wheat grownunder white light. These results indicate that wheat can completeits life cycle under red LEDs alone, but larger plants and greateramounts of seed are produced in the presence of red LEDs supplementedwith a quantity of blue light. Key words: Triticum aestivum L., red light, blue light, subtillering, bioregenerative advanced life support  相似文献   

8.
The activity of the Fe3+ reductase of excised adventitious roots of Ficus benjamina L., grown in hydroponic culture without iron, was determined by a colorometric assay simplified by the use of a microplate reader. Reductase activity remained the same from pH 4.5 to 6.5 and decreased sharply above pH 6.5. Acetate buffer inhibited reduction. During early stages of root growth, excised roots did not exhibit Fe3+ reductase activity. After several weeks and extensive root system development, Fe3+ reduction still was not detectable in primary roots, but intermediate and high rates of reduction occurred in lateral and newly formed root clusters, respectively. Clustered roots only developed on plants grown at 0 or very low (<1 micromolar) iron. Microscopic examination revealed the root cluster to be composed of up to 30 lateral roots, usually less than 1 millimeter in diameter and 1 centimeter in length, that were completely covered with root hairs.  相似文献   

9.
Endophyte-infected (E+) tall fescue (Festuca arundinacea Schreb.) plants grown in phosphorus (P) deficient soils accumulate more P in roots and shoots than noninfected isolines. In a growth chamber experiment, four tall fescue genotypes DN2, DN4, DN7, and DN11, infected with their naturally occurring strains of Neotyphodium coenophialum (Morgan-Jones & Gams) Glenn, Bacon & Hanlin, and their noninfected isolines (E-), were cultivated in nutrient solution at two P levels: 31 ppm (P+) and 0 ppm (P-) for 4 wk. The Fe3+ reducing activity of extracellular reductants and intact root tissues, and total phenolic concentration in roots and shoots were measured. Endophyte infection significantly increased Fe3+ reducing activity rate of extracellular reductants (9.6 × 10-3 mol Fe3+ h-1 g-1 root FW) when compared to E- plants (3.9 × 10-3) and Fe3+ reduction rate of intact root tissues (6.16 and 4.48 mol Fe3+ h-1 g-1 root FW, respectively for E+ and E- plants). In response to P deficiency, Fe3+ reduction rate of intact root tissues increased in E+ plants by 375% when compared to E- plants, whereas no significant differences were observed when P was provided. Total phenolic concentration was 20% greater in shoots of E+ plants than in E- plants. In response to P deficiency, total phenolic concentration significantly increased in roots of E+ plants by 7%, and decreased in roots of E- plants by 10%. The most active Fe3+ reducing zones were located along branching of secondary and tertiary roots. The Fe3+ reducing activity on the root surface and total phenolic concentration in roots and shoots increased dramatically in response to endophyte infection, especially under P limiting conditions.Visiting Scientist sponsored by the Fulbright Program No. 21133  相似文献   

10.
The release of Fe from horse spleen ferritin through photochemical reduction of Fe3+ to Fe2+ was studied in vitro. Spectrophotometric measurement of the Fe(Ferrozine)3 4– complex (specific for Fe2+) was used to quantify rates of Fe2+ mobilization. Light radiation from cool white fluorescent plus incandescent bulbs effectively promoted the rate of Fe2+ release. Compounds known to be present in plants provided further regulation of photorelease. Reductive removal from ferritin was inhibited by phosphate, and hydroxide, whereas citrate, oxalate, tartrate, and caffeate enhanced the release. Of the organic acids studied, caffeate was the only compound which induced detectable Fe2+ mobilization in the absence of irradiation. Rate constants for photorelease ranged from 2.7×10–3 sec–1 (pH=4.6) to 2.1×10–3 sec–1 (pH=7.1) at 26.5°C. These findings provide one possible explanation for the low level of ferritin-Fe in healthy, illuminated plant tissue.  相似文献   

11.
The effects of Cu2+ on growth, chlorophyll and other ion contents ofKoeleria splendens originated from Cu-contaminated soil have been investigated in nutrient solution. The most evident Cu2+ effects concern the root growth, especially the root length. Since in plants grown under lower Cu2+ concentrations (4 and 8 μM) root elongation, biomass, chlorophyll, Mg2+, Fe2+, Ca2+ and K+ content were increased compared with the control, the development of an adaptive mechanism ofK. splendens to Cu2+ is suggested. High Cu2+ concentration (160 μM) caused a significant reduction in root length and biomass as well as a decreased rate of chlorophyll biosynthesis. The reduction of growth can be correlated with the toxic effect of Cu2+ on photosynthesis, root respiration and protein synthesis in roots. 160 μM Cu2+-treatment had a negative influence on the concentrations of Ca2+, Fe2+, Mg2+ and K+ and a positive influence on the Cu2+ concentration in the plant tissues. Loss of nutrients similar to the senescence response suggests that excess of Cu2+ leads to the progressive senescence of the plants. Our results demonstrate the existence of an adaptive mechanism ofK. splendens under low Cu2+ concentrations, while high Cu2+ quantities cause disturbances in plant function.  相似文献   

12.
Seven vegetable species grown in controlled environments were given similar daily amounts of visible radiation (500 J cm-2) during three different photoperiod treatments. Plants were given (A) 12 h of visible irradiance (115 W m-2) from fluorescent and tungsten lamps, (B) 16 h of the same light at 88 W m-2 or (C) Treatment A extended to 16 h with 4 h of low-intensity incandescent light (3 W m?2) from tungsten lamps only. All seven species grew faster when daylength was extended with light of photosynthetic intensity (B), probably through increased net assimilation rates, and leaf area of these plants increased in proportion to change in plant dry weight. Daylength extension with a mixture of red and far-red light (C) induced photomorphogenic changes in specific leaf area in all species examined and increased leaf area and plant dry weight of lettuce, celery, beetroot and spinach beet but not of three members of the Cruciferae (radish, cabbage and oilseed rape).  相似文献   

13.
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress.  相似文献   

14.
While evaluating the impact of iron nanoparticles (NPs) on terrestrial plants we realized potential of root system of intact plants to form orange–brown complexes constituted of NPs around their roots and at bottom/side of tubes when exposed to FeCl3. These orange–brown complexes/plaques seen around roots were similar to that reported in wetland plants under iron toxicity. Transmission electron microscopy coupled with energy dispersive X-ray analysis revealed that orange–brown complexes/plaques, formed by root system of all 16 plant species from 11 distinct families tested, were constituted of NPs containing Fe. Selected area electron diffraction and powder X-ray diffraction spectra showed their amorphous nature. Thermogravimetric and fourier transform infra-red analysis showed that these Fe-NPs/nanocomplexes were composed of iron-oxyhydroxide. These plant species generated orange–brown Fe-NPs/nanocomplexes even under strict sterile conditions establishing inbuilt and independent potential of their root system to generate Fe-NPs. Root system of intact plants showed ferric chelate reductase activity responsible for reduction of Fe3+ to Fe2+. Reduction of potassium ferricyanide by root system of intact plants confirmed that root surface possess strong reducing strength, which could have played critical role in reduction of Fe3+ and formation of Fe-NPs/nanocomplexes. Atomic absorption spectrophotometric analysis revealed that majority of iron was retained in Fe-nanocomplexes/plaques, while only 2–3 % was transferred to shoots, indicating formation of nanocomplexes is a phytostabilization mechanism evolved by plants to restrict uptake of iron above threshold levels. We believe that formation of Fe-NPs/nanocomplexes is an ideal homeostasis mechanism evolved by plants to modulate uptake of desired levels of ionic Fe.  相似文献   

15.
T3238fer (Fe-inefficient) and T3238FER (Fe-efficient) tomato plants differ in their ability to utilize Fe and therefore can be used as test genotypes to locate sites of Fe uptake or to characterize changes that occur in roots in response to Fe stress (Fe deficiency). T3238fer does not respond to Fe stress. Release of hydrogen ions and reduction of Fe3+ to Fe2+ are two primary responses of T3238FER roots to Fe stress. Fe reduction sites were predominately in the young lateral roots, and between the regions of root elongation and maturation of the primary root. The use of BDPS (bathophenanthrolinedisulfonate) to trap Fe2+ did not affect the release of H+ ions or reduction by T3238FER roots. BPDS did not decrease Fe uptake until it exceeded the Fe concentration in the nutrient solution. A sevenfold increase in BPDS caused a threefold decrease in Fe taken up by the plant. Fe3+ is reduced to Fe2+ at root sites accessible to BPDS. Adding Zn decreased the response to Fe stress. Iron stress initiates the development of lateral roots, and we propose that most Fe enters the plant through these roots. The iron moves through protoxylem into the metaxylem of the primary root and then to the top of the plant as Fe citrate. Root environmental factors that are competitive or inhibit Fe-stress response, or genotypes that fail to respond to Fe stress, contribute to the development of Fe deficiency in plants.  相似文献   

16.
Summary The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For all cultivars, stem lengths after 4 wk were longest under LPS, followed by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number of axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred with LPS or LPS/CWF lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.  相似文献   

17.
Ohwaki  Y.  Kraokaw  S.  Chotechuen  S.  Egawa  Y.  Sugahara  K. 《Plant and Soil》1997,192(1):107-114
Ten mungbean cultivars were evaluated for their resistance to iron deficiency in view of chlorosis symptoms, plant growth and seed yield under field conditions on a calcareous soil in Thailand. The KPS2 cultivar was highly susceptible; the KPS1, PSU1 and Pag-asa 1 cultivars were somewhat susceptible; the VC1163B cultivar was moderately tolerant; the CN36, CN60, UT1 and CNM-I cultivars were tolerant; and the CNM8509B cultivar was very tolerant to iron deficiency. Foliar application of a solution of 5 g L-1 ferrous sulphate was effective in correcting chlorosis that was induced by iron deficiency, and it enhanced both the growth and the yield of susceptible cultivars. Compared with the susceptible cultivar KPS2, the tolerant cultivar UT1 had a greater ability to lower the pH of the nutrient solution in response to iron deficiency. The root-associated Fe3+-reduction activity of UT1 that had been grown in -Fe medium was similar to that of the plants grown in +Fe medium when the acidification of the medium occurred. Acidification of the medium in response to iron deficiency might contribute to the efficient solubilization of iron from calcareous soils, and it related more closely to the resistance to iron deficiency than Fe3+ reduction by roots in mungbean cultivars.  相似文献   

18.
A new technique of plant analysis to resolve iron chlorosis   总被引:4,自引:0,他引:4  
Summary Iron though indispensable for the biosynthesis of chlorophyll, its total content in the plant was not associated with the occurrence of chlorosis. In order to overcome this inconsistency a new technique of plant iron analysis has been developed. It consists of the determination of Fe2+, the fraction of iron involved in the synthesis of chlorophyll.The choice of 1–10 o-phenanthroline (o-Ph) as an extractant for Fe2+ was based on its remarkably higher stability constant for Fe2+ than Fe3+. On this basis, it could preferentially chelate Fe2+. The highly specific organce colour of the Fe2+-phenanthroline complex made possible the determination of Fe2+ by reading the transmittancy at 510 nm.The procedure involves extraction of 2 g of thoroughly washed, chopped, fresh plant by 20 ml of o-phenanthroline extractant (pH 3.0, conc. 1.5%). The plant samples treated with the extractant are allowed to stand for 16 hours and Fe2+ is determined in the filtrate by reading the transmittancy at 510 nm.In sharp contrast to total iron the green plants always contained more Fe2+ than chlorotic plants. The technique has been developed for rice but is expected to be successful for other crops also.  相似文献   

19.
Growing cotton in a greenhouse with 12-h of supplemental light [8,608 lux (800 ft-c) from combination of mercury and Lucalux® lamps] resulted in 2 × to > 3 × greater reproduction of Meloidogyne incognita and Belonolaimus longicaudatus as compared to natural light alone. Rate of increase of Hoplolaimus galeatus was affected little in this experiment. In a second experiment under controlled conditions in a phytotron, light source and intensity had greater influence on the reproduction of Heterodera glycines and Pratylenchus penetrans on soybean than on B. longicaudatus. Fluorescent plus incandescent and metal halide light sources resulted in the greatest nematode reproduction. Lucalux lamps resulted in much lower rates of nematode increase than other light sources. Rates of nematode increase on soybean under the different light sources in the phytotron generally were positively related to plant growth.  相似文献   

20.
While lupins suffer severely from Fe deficiency when grown on calcareous soils, field peas under the same conditions grow normally. This paper aimed to identify whether these differences were related to differences in either the pattern or capacity for rhizosphere acidification or Fe3+ reduction between these species. Two lupin species (Lupinus angustifolius, L. cosentinii) and field peas (Pisum sativum) were grown in solution culture for 5 weeks with both an adequate and a low supply of Fe. Plants were reliant on symbiotically fixed N. The extent of iron reduction was determined using the chelates TPTZ and BPDS. The pattern of reactions around roots was determined by placing roots in agar containing either bromocresol purple or TPTZ. The low supply of Fe decreased the growth of lupins by over 30% and induced severe chlorosis and necrosis. Growth of the peas was reduced by less than 15% and no symptoms appeared. All species acidified the solutions by about 1 pH unit regardless of the Fe treatment. The level of Fe3+ reduction was higher for all species grown with low Fe than with adequate Fe. Capacity for Fe3+ reduction was higher for all species grown with low Fe than with adequate Fe. Capacity for Fe3+ reduction was similar for all species. The pattern of acidification and reduction around roots was also similar between species. Thus it appears that the capacity of lupins to reduce Fe3+ in the rhizosphere is not the primary cause of Fe deficiency in lupins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号