首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schauf and Bullock (1979. Biophys. J. 27:193-208; 1982. Biophys. J. 37:441-452), using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford (1981. J. Gen. Physiol. 77:1-22) found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with "parallel gate" models, provided that one gating particle has a substantially reduced effective valence.  相似文献   

2.
Macroscopic ionic sodium currents and gating currents were studied in voltage-clamped, dialyzed giant axons of the squid Loligo pealei under conditions of regular and inverse sodium gradients. Sodium currents showed regular kinetics but inactivation was incomplete, showing a maintained current for depolarizations lasting 18 ms. The ratio of the maintained current to the peak current increased with depolarization and it did not depend on the direction of the current flow or the sodium gradient. The time constant of inactivation was not affected by the sodium gradient. Double-pulse experiments allowed the separation of a normal inactivating component and a noninactivating component of the sodium currents. In gating current experiments, the results from double-pulse protocols showed that the charge was decreased by the prepulse and that the slow component of the 'on' gating current was preferentially depressed. As expected, charge immobilization was established faster at higher depolarizations than at low depolarizations, however, the amount of immobilized charge was unaffected by the pulse amplitude. This indicates that the incomplete sodium inactivation observed at high depolarizations is not the result of decreased charge immobilization; the maintained current must be due to a conductance that appears after normal charge immobilization and fast inactivation.  相似文献   

3.
Simulation of Na channel inactivation by thiazine dyes   总被引:7,自引:2,他引:5       下载免费PDF全文
Some dyes of the methylene blue family serve as artificial inactivators of the sodium channels when present inside squid axons at a concentration of approximately 0.1 mM. The dyes restore a semblance of inactivation after normal inactivation has been destroyed by pronase. In fibers that inactivate normally, the dyes hasten the decay of sodium current. Many dye-blocked channels conduct transiently on exit of the dye molecule after repolarization to the holding potential. In contrast, normally inactivated channels do not conduct during recovery from inactivation. Kinetic evidence shows that inactivation of a dye-blocked channel is unlikely or impossible, which suggests that dye molecules compete with inactivation "particles" for the same site. In the absence of tetrodotoxin, the dyes do not affect the ON gating current unless the interpulse interval is very short. If sufficient equilibration time is allowed during a pulse, the initial amplitude of the OFF gating current is reduced to near zero. This suggests that a dye molecule is a Na channel completely blocks that channel's gating current, even the fraction that is resistant to normal inactivation. Dyes block INa and Ig with the same time course. This provides the strongest evidence to date that virtually all of recorded "gating current" is associated with Na channels. Tetrodotoxin greatly slows dissociation of dye molecules from Na channels and reduced gating current during both opening and closing of the channels.  相似文献   

4.
Protein phosphorylation is an important mechanism in the modulation of voltage-dependent ionic channels. In squid giant axons, the potassium delayed rectifier channel is modulated by an ATP-mediated phosphorylation mechanism, producing important changes in amplitude and kinetics of the outward current. The characteristics and biophysical basis for the phosphorylation effects have been extensively studied in this preparation using macroscopic, single-channel and gating current experiments. Phosphorylation produces a shift in the voltage dependence of all voltage-dependent parameters including open probability, slow inactivation, first latency, and gating charge transferred. The locus of the effect seems to be located in a fast 20 pS channel, with characteristics of delayed rectifier, but at least another channel is phosphorylated under our experimental conditions. These results are interpreted quantitatively with a mechanistic model that explains all the data. In this model the shift in voltage dependence is produced by electrostatic interactions between the transferred phosphate and the voltage sensor of the channel.  相似文献   

5.
We investigated effects of paramyotonia congenita mutations F1473S and F1705I on gating of skeletal muscle Na+ channels. We used on-cell recordings from Xenopus oocytes to compare fast inactivation and deactivation in wild-type and mutant channels. Then, we used gating current recordings to determine how these actions of PC mutants might be reflected in their effects on charge movement and its immobilization. F1473S, but not F1705I, accelerated deactivation from the inactivated state and enhanced the remobilization of gating charge. F1473S and F1705I decreased the completion of closed-state fast inactivation, and decreased charge movement over the voltage range at which channels did not activate. An unexpected result was that F1705I increased the extent of charge immobilization in response to strong depolarization. Our results suggest that the DIV S4-S5 linker mutation F1473S promotes the hyperpolarized position of DIVS4 to accelerate recovery. Inhibition of charge movement by F1473S and F1705I in the absence of channel opening is discussed with respect to their effects on closed-state fast inactivation.  相似文献   

6.
We investigated effects of paramyotonia congenita mutations F1473S and F1705I on gating of skeletal muscle Na+ channels. We used on-cell recordings from Xenopus oocytes to compare fast inactivation and deactivation in wild type and mutant channels. Then, we used gating current recordings to determine how these actions of PC mutants might be reflected in their effects on charge movement and its immobilization. F1473S, but not F1705I, accelerated deactivation from the inactivated state and enhanced the remobilization of gating charge. F1473S and F1705I decreased the completion of closed-state fast inactivation, and each mutant decreased charge movement over the voltage range at which channels did not activate. An unexpected result was that F1705I increased the extent of charge immobilization in response to strong depolarization. Our results suggest that the DIV S4-S5 linker mutation F1473S promotes the hyperpolarized position of DIVS4 to accelerate recovery. Inhibition of charge movement by F1473S and F1705I in the absence of channel opening is discussed with respect to their effects on closed-state fast inactivation.  相似文献   

7.
The role of sodium channel closed-state fast inactivation in membrane excitability is not well understood. We compared open- and closed-state fast inactivation, and the gating charge immobilized during these transitions, in skeletal muscle channel hNa(V)1.4. A significant fraction of total charge movement and its immobilization occurred in the absence of channel opening. Simulated action potentials in skeletal muscle fibers were attenuated when pre-conditioned by sub-threshold depolarization. Anthopleurin A, a site-3 toxin that inhibits gating charge associated with the movement of DIVS4, was used to assess the role of this voltage sensor in closed-state fast inactivation. Anthopleurin elicited opposing effects on the gating mode, kinetics and charge immobilized during open- versus closed-state fast inactivation. This same toxin produced identical effects on recovery of channel availability and remobilization of gating charge, irrespective of route of entry into fast inactivation. Our findings suggest that depolarization promoting entry into fast inactivation from open versus closed states provides access to the IFMT receptor via different rate-limiting conformational translocations of DIVS4.  相似文献   

8.
We have studied ionic and gating currents in mutant and wild-type Shaker K+ channels to investigate the mechanisms of channel activation and the relationship between the voltage sensor of the channel and its inactivation particle. The turn on of the gating current shows a rising phase, indicating that the hypothetical identical activation subunits are not independent. Hyperpolarizing prepulses indicate that most of the voltage-dependence occurs in the transitions between closed states. The open-to-closed transition is voltage independent, as suggested by the presence of a rising phase in the off gating currents. In Shaker channels showing fast inactivation, the off gating charge is partially immobilized as a result of depolarizing pulses that elicit inactivation. In mutant channels lacking inactivation, the charge is recovered quickly at the end of the pulse. Internal TEA mimics the inactivation particle in its behavior but the charge immobilization is established faster and is complete. We conclude that the activation mechanism cannot be due to the movement of identical independent gating subunits, each undergoing first order transitions, and that the inactivation particle is responsible for charge immobilization in this channel.  相似文献   

9.
The effect of low pH on the kinetics of Na channel ionic and gating currents was studied in frog skeletal muscle fibers. Lowering external pH from 7.4 to 5.0 slows the time course of Na current consistent with about a +25-mV shift in the voltage dependence of activation and inactivation time constants. Similar shifts in voltage dependence adequately describe the effects of low pH on the tail current time constant (+23.3 mV) and the gating charge vs. voltage relationship (+22.1 mV). A significantly smaller shift of +13.3 mV described the effect of pH 5.0 solution on the voltage dependence of steady state inactivation. Changes in the time course of gating current at low pH were complex and could not be described as a shift in voltage dependence. tau g, the time constant that describes the time course of the major component of gating charge movement, was slowed in pH 5.0 solution by a factor of approximately 3.5 for potentials from -60 to +45 mV. We conclude that the effects of low pH on Na channel gating cannot be attributed simply to a change in surface potential. Therefore, although it may be appropriate to describe the effect of low pH on some Na channel kinetic properties as a "shift" in voltage dependence, it is not appropriate to interpret such shifts as a measure of changes in surface potential. The maximum gating charge elicited from a holding potential of -150 mV was little affected by low pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The fast inactivation of sodium currents and the immobolization of sodium gating charge are thought to be closely coupled to each other. This notion was tested in the squid axon in which kinetics and steady-state properties of the gating charge movement were compared before and after removal of the Na inactivation by batrachotoxin (BTX), pronase, or chloramine-T. The immobilization of gating charge was determined by measuring the total charge movement (QON) obtained by integrating the ON gating current (Ig,ON) using a double pulse protocol. After removal of the fast inactivation with pronase or chloramine-T, the gating charge movement was no longer immobilized. In contrast, after BTX modification, the channels still exhibited an immobilization of the gating charge (QON) with an onset time course and voltage dependence similar to that for the activation process. These results show that BTX can uncouple the charge immobilization from the fast Na inactivation mechanism, suggesting that the Na gating charge movement can be immobilized independently of the inactivation of the channel.  相似文献   

11.
Kinetic effects of osmotic stress on sodium ionic and gating currents have been studied in crayfish giant axons after removal of fast inactivation with chloramine-T. Internal perfusion with media made hyperosmolar by addition of formamide or sucrose, reduces peak sodium current (before and after removal of fast inactivation with chloramine-T), increases the half-time for activation, but has no effect on tail current deactivation rate(s). Kinetics of ON and OFF gating currents are not affected by osmotic stress. These results confirm (and extend to sodium channels) the separation of channel gating mechanisms into voltage-sensitive and solvent-sensitive processes recently proposed by Zimmerberg J., F. Bezanilla, and V. A. Parsegian. (1990. Biophys. J. 57:1049-1064) for potassium delayed rectifier channels. Additionally, the kinetic effects produced by hyperosmolar media seem qualitatively similar to the kinetic effects of heavy water substitution in crayfish axons (Alicata, D. A., M. D. Rayner, and J. G. Starkus. 1990. Biophys. J. 57:745-758). However, our observations are incompatible with models in which voltage-sensitive and solvent-sensitive gating processes are presumed to be either (a) strictly sequential or, (b) parallel and independent. We introduce a variant of the parallel model which includes explicit coupling between voltage-sensitive and solvent-sensitive processes. Simulations of this model, in which the total coupling energy is as small as 1/10th of kT, demonstrate the characteristic kinetic changes noted in our data.  相似文献   

12.
We investigated the contribution of the putative inactivation lid in voltage-gated sodium channels to gating charge immobilization (i.e., the slow return of gating charge during repolarization) by studying a lid-modified mutant of the human heart sodium channel (hH1a) that had the phenylalanine at position 1485 in the isoleucine, phenylalanine, and methionine (IFM) region of the domain III-IV linker mutated to a cysteine (ICM-hH1a). Residual fast inactivation of ICM-hH1a in fused tsA201 cells was abolished by intracellular perfusion with 2.5 mM 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET). The time constants of gating current relaxations in response to step depolarizations and gating charge-voltage relationships were not different between wild-type hH1a and ICM-hH1a(MTSET). The time constant of the development of charge immobilization assayed at -180 mV after depolarization to 0 mV was similar to the time constant of inactivation of I(Na) at 0 mV for hH1a. By 44 ms, 53% of the gating charge during repolarization returned slowly; i.e., became immobilized. In ICM-hH1a(MTSET), immobilization occurred with a similar time course, although only 31% of gating charge upon repolarization (OFF charge) immobilized. After modification of hH1a and ICM-hH1a(MTSET) with Anthopleurin-A toxin, a site-3 peptide toxin that inhibits movement of the domain IV-S4, charge immobilization did not occur for conditioning durations up to 44 ms. OFF charge for both hH1a and ICM-hH1a(MTSET) modified with Anthopleurin-A toxin were similar in time course and in magnitude to the fast component of OFF charge in ICM-hH1a(MTSET) in control. We conclude that movement of domain IV-S4 is the rate-limiting step during repolarization, and it contributes to charge immobilization regardless of whether the inactivation lid is bound. Taken together with previous reports, these data also suggest that S4 in domain III contributes to charge immobilization only after binding of the inactivation lid.  相似文献   

13.
We investigated structural determinants of fast inactivation and deactivation in sodium channels by comparing ionic flux and charge movement in skeletal muscle channels, using mutations of DIII-DIV linker charges. Charge altering and substituting mutations at K-1317, K-1318 depolarized the g(V) curve but hyperpolarized the h(infinity) curve. Charge reversal and substitution at this locus reduced the apparent voltage sensitivity of open- and closed-state fast inactivation. These effects were not observed with charge reversal at E-1314, E-1315. Mutations swapping or neutralizing the negative cluster at 1314, 1315 and the positive cluster at 1317, 1318 indicated that local interactions dictate the coupling of activation to fast inactivation. Gating charge was immobilized before channel entry into fast inactivation in hNa(V)1.4 but to a lesser extent in mutations at K-1317, K-1318. These results suggest that charge is preferentially immobilized in channels inactivating from the open state. Recovery of gating charge proceeded with a single, fast phase in the double mutation K-1317R, K-1318R. This mutation also partially uncoupled recovery from deactivation. Our findings indicate that charged residues near the fast inactivation "particle" allosterically interact with voltage sensors to control aspects of gating in sodium channels.  相似文献   

14.
Nonlinear capacitative current (charge movement) was compared to the Ca current (ICa) in single guinea pig ventricular myocytes. It was concluded that the charge movement seen with depolarizing test steps from -50 mV is dominated by L-type Ca channel gating current, because of the following observations. (a) Ca channel inactivation and the immobilization of the gating current had similar voltage and time dependencies. The degree of channel inactivation was directly proportional to the amount of charge immobilization, unlike what has been reported for Na channels. (b) The degree of Ca channel activation was closely correlated with the amount of charge moved at all test potentials between -40 and +60 mV. (c) D600 was found to reduce the gating current in a voltage- and use-dependent manner. D600 was also found to induce "extra" charge movement at negative potentials. (d) Nitrendipine reduced the gating current in a voltage-dependent manner (KD = 200 nM at -40 mV). However, nitrendipine did not increase charge movement at negative test potentials. Although contamination of the Ca channel gating current from other sources cannot be fully excluded, it was not evident in the data and would appear to be small. However, it was noted that the amount of Ca channel gating charge was quite large compared with the magnitude of the Ca current. Indeed, the gating current was found to be a significant contaminant (19 +/- 7%) of the Ca tail currents in these cells. In addition, it was found that Ca channel rundown did not diminish the gating current. These results suggest that Ca channels can be "inactivated" by means that do not affect the voltage sensor.  相似文献   

15.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

16.
Sodium channel gating currents in frog skeletal muscle   总被引:7,自引:5,他引:2       下载免费PDF全文
Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.  相似文献   

17.
A voltage clamp technique was used to study sodium currents and gating currents in squid axons internally perfused with the membrane impermeant sodium channel blocker, QX-314. Block by QX-314 is strongly and reversibly enhanced if a train of depolarizing pulses precedes the measurement. The depolarization-induced block is antagonized by external sodium. This antagonism provides evidence that the blocking site for the drug lies inside the channel. Depolarization-induced block of sodium current by QX-314 is accompanied by nearly twofold reduction in gating charge movement. This reduction does not add to a depolarization-induced immobilization of gating charge normally present and believed to be associated with inactivation of sodium channels. Failure to act additively suggests that both, inactivation and QX-314, affect the same component of gating charge movement. Judged from gating current measurement, a drug-blocked channel is an inactivated channel. In the presence of external tetrodotoxin and internal QX-314, gating charge movement is always half its normal size regardless of conditioning, as it QX-314 is then permanently present in the channel.  相似文献   

18.
Heterologous expression of sodium channel mutations in hypokalemic periodic paralysis reveals 2 variants on channel dysfunction. Charge-reducing mutations of voltage sensing S4 arginine residues alter channel gating as typically studied with expression in mammalian cells. These mutations also produce leak currents through the voltage sensor module, as typically studied with expression in Xenopus oocytes. DIIIS4 mutations at R3 in the skeletal muscle sodium channel produce gating defects and omega current consistent with the phenotype of reduced excitability. Here, we confirm DIIIS4 R3C gating defects in the oocyte expression system for fast inactivation and its recovery. We provide novel data for the effects of the cysteine mutation on voltage sensor movement, to further our understanding of sodium channel defects in hypokalemic periodic paralysis. Gating charge movement and its remobilization are selectively altered by the mutation at hyperpolarized membrane potential, as expected with reduced serum potassium.  相似文献   

19.
Heterologous expression of sodium channel mutations in hypokalemic periodic paralysis reveals 2 variants on channel dysfunction. Charge-reducing mutations of voltage sensing S4 arginine residues alter channel gating as typically studied with expression in mammalian cells. These mutations also produce leak currents through the voltage sensor module, as typically studied with expression in Xenopus oocytes. DIIIS4 mutations at R3 in the skeletal muscle sodium channel produce gating defects and omega current consistent with the phenotype of reduced excitability. Here, we confirm DIIIS4 R3C gating defects in the oocyte expression system for fast inactivation and its recovery. We provide novel data for the effects of the cysteine mutation on voltage sensor movement, to further our understanding of sodium channel defects in hypokalemic periodic paralysis. Gating charge movement and its remobilization are selectively altered by the mutation at hyperpolarized membrane potential, as expected with reduced serum potassium.  相似文献   

20.
We have studied the effects of temperature changes on Na currents in squid giant axons. Decreases in temperature in the 15-1 degrees C range decrease peak Na current with a Q10 of 2.2. Steady state currents, which are tetrodotoxin sensitive and have the same reversal potential as peak currents, are almost unaffected by temperature changes. After removal of inactivation by pronase treatment, steady state current amplitude has a Q10 of 2.3. Na currents generated at large positive voltages sometimes exhibit a biphasic activation pattern. The first phase activates rapidly and partially inactivates and is followed by a secondary slow current increase that lasts several milliseconds. Peak Na current amplitude can be increased by delivering large positive prepulses, an effect that is more pronounced at low temperatures. The slow activation phase is eliminated after a positive prepulse. The results are consistent with the hypothesis that there are two forms of the Na channel: (a) rapidly activating channels that completely inactivate, and (b) slowly activating "sleepy" channels that inactivate slowly if at all. Some fast channels are assumed to be converted to sleepy channels by cooling, possibly because of a phase transition in the membrane. The existence of sleepy channels complicates the determination of the Q10 of gating parameters and single-channel conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号