首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One mechanism for the repair of UV-induced DNA damage is the base excision repair pathway. The initial step in this pathway and the specificity for the type of damage that is to be repaired reside in DNA glycosylase/abasic (AP) lyases. Cleavage of the glycosyl bond of the 5' pyrimidine of a cyclobutane pyrimidine dimer is hypothesized to occur through the destabilization of the glycosyl bond by protonation of the base or sugar with a concomitant nucleophilic attack on C1' of the deoxyribose moiety. Based on mechanistic biochemical information from several glycosylase/AP lyases and the structural information on the bacteriophage T4 pyrimidine dimer glycosylase (T4-pdg), the catalytic mechanism has been investigated for the Chlorella virus pyrimidine dimer glycosylase (cv-pdg). As predicted from modeling studies and reaction mechanisms, the primary amine that initiates the nucleophilic displacement reaction could be trapped as a covalent imine intermediate and its identity determined by sequential Edman degradation. The primary amine was identified as the alpha-amino group on the N-terminal Thr2. Site-directed mutagenesis was subsequently used to confirm the conclusions that the alpha-amino group of cv-pdg is the active-site nucleophile.  相似文献   

2.
The repair of UV light-induced cyclobutane pyrimidine dimers can proceed via the base excision repair pathway, in which the initial step is catalyzed by DNA glycosylase/abasic (AP) lyases. The prototypical enzyme studied for this pathway is endonuclease V from the bacteriophage T4 (T4 bacteriophage pyrimidine dimer glycosylase (T4-pdg)). The first homologue for T4-pdg has been found in a strain of Chlorella virus (strain Paramecium bursaria Chlorella virus-1), which contains a gene that predicts an amino acid sequence homology of 41% with T4-pdg. Because both the structure and critical catalytic residues are known for T4-pdg, homology modeling of the Chlorella virus pyrimidine dimer glycosylase (cv-pdg) predicted that a conserved glutamic acid residue (Glu-23) would be important for catalysis at pyrimidine dimers and abasic sites. Site-directed mutations were constructed at Glu-23 to assess the necessity of a negatively charged residue at that position (Gln-23) and the importance of the length of the negatively charged side chain (Asp-23). E23Q lost glycosylase activity completely but retained low levels of AP lyase activity. In contrast, E23D retained near wild type glycosylase and AP lyase activities on cis-syn dimers but completely lost its activity on the trans-syn II dimer, which is very efficiently cleaved by the wild type cv-pdg. As has been shown for other glyscosylases, the wild type cv-pdg catalyzes the cleavage at dimers or AP sites via formation of an imino intermediate, as evidenced by the ability of the enzyme to be covalently trapped on substrate DNA when the reactions are carried out in the presence of a strong reducing agent; in contrast, E23D was very poorly trapped on cis-syn dimers but was readily trapped on DNA containing AP sites. It is proposed that Glu-23 protonates the sugar ring, so that the imino intermediate can be formed.  相似文献   

3.
We have studied the kinetics of breakage of apurinic (AP) sites by the intercalating agent 9-aminoellipticine using fluorimetric methods with single (ss)- and double (ds)-stranded apurinic DNA. In order to understand the chemical process, high performance liquid chromatography was used to follow the reaction kinetics with the apurinic oligonucleotide model T(AP)T. The unstable intermediate, which is responsible for the beta-elimination step, is a Schiff base resulting from the interaction of the amino group of the aromatic amine with the aldehyde function of the deoxyribose moiety (AP site). Fluorescence occurs simultaneously with the breakage of both ss and ds DNA and of the oligonucleotide and arises from the formation of a conjugated double bond on the Schiff base through the beta-elimination reaction. In optimal conditions, the second order rate constant for the fluorescence build up is 15 x 10(3) min-1 M-1 for ds DNA and 0.105 x 10(3) min-1 M-1 for T(AP)T. The ability of 9-aminoellipticine to induce fluorescence and breakage of ss DNA and T(AP)T shows that intercalation is not essential for this reaction to occur. Nevertheless, the greater rate constant with DNA suggests that stacking is an important parameter for the reaction of the aromatic amine with the AP site.  相似文献   

4.
The base excision repair (BER) pathway for ultraviolet light (UV)-induced cyclobutane pyrimidine dimers is initiated by DNA glycosylases that also possess abasic (AP) site lyase activity. The prototypical enzyme known to catalyze these reactions is the T4 pyrimidine dimer glycosylase (T4-Pdg). The fundamental chemical reactions and the critical amino acids that lead to both glycosyl and phosphodiester bond scission are known. Catalysis proceeds via a protonated imine covalent intermediate between the alpha-amino group of the N-terminal threonine residue and the C1' of the deoxyribose sugar of the 5' pyrimidine at the dimer site. This covalent complex can be trapped as an irreversible, reduced cross-linked DNA-protein complex by incubation with a strong reducing agent. This active site trapping reaction is equally efficient on DNA substrates containing pyrimidine dimers or AP sites. Herein, we report the co-crystal structure of T4-Pdg as a reduced covalent complex with an AP site-containing duplex oligodeoxynucleotide. This high-resolution structure reveals essential precatalytic and catalytic features, including flipping of the nucleotide opposite the AP site, a sharp kink (approximately 66 degrees ) in the DNA at the dimer site and the covalent bond linking the enzyme to the DNA. Superposition of this structure with a previously published co-crystal structure of a catalytically incompetent mutant of T4-Pdg with cyclobutane dimer-containing DNA reveals new insights into the structural requirements and the mechanisms involved in DNA bending, nucleotide flipping and catalytic reaction.  相似文献   

5.
The glycosidic bond hydrolysis reaction of the enzyme uracil DNA glycosylase (UDG) occurs by a two-step mechanism involving complete bond breakage to the uracil anion leaving group in the first step, formation of a discrete glycosyl cation-uracil anion intermediate, followed by water attack in a second transition-state leading to the enzyme-bound products of uracil and abasic DNA. We have synthesized and determined the binding affinities of unimolecular mimics of the substrate and first transition-state (TS1) in which the uracil base is covalently attached to the sugar, and in addition, bimolecular mimics of the second addition transition state (TS2) in which the base and sugar are detached. We find that the bipartite mimics of TS2 are superior to the TS1 mimics. These results indicate that bipartite TS2 inhibitors could be useful for inhibition of glycosylases that proceed by stepwise reaction mechanisms.  相似文献   

6.
Lloyd RS 《Mutation research》2005,577(1-2):77-91
The most prevalent forms of cancer in humans are the non-melanoma skin cancers, with over a million new cases diagnosed in the United States annually. The portions of the body where these cancers arise are almost exclusively on the most heavily sun-exposed tissues. It is now well established that exposure to ultraviolet light (UV) causes not only damage to DNA that subsequently generates mutations and a transformed phenotype, but also UV-induced immunosuppression. Human cells have only one mechanism to remove the UV-induced dipyrimidine DNA photoproducts: nucleotide excision repair (NER). However, simpler organisms such as bacteria, bacteriophages and some eukaryotic viruses contain up to three distinct mechanisms to initiate the repair of UV-induced dipyrimidine adducts: NER, base excision repair (BER) and photoreversal. This review will focus on the biology and the mechanisms of DNA glycosylase/AP lyases that initiate BER of cis-syn cyclobutane pyrimidine dimers. One of these enzymes, the T4 pyrimidine dimer glycosylase (T4-pdg), formerly known as T4 endonuclease V has served as a model in the study of this entire class of enzymes. It was the first DNA repair enzyme: (1) for which a biologically significant processive nicking activity was demonstrated; (2) to have its active site determined, (3) to have its crystal structure solved, (4) to be shown to carry out nucleotide flipping, and (5) to be used in human clinical trials for disease prevention.  相似文献   

7.
8.
M Fuxreiter  A Warshel  R Osman 《Biochemistry》1999,38(30):9577-9589
T4 Endonuclease V (EndoV) is a base excision repair enzyme that removes thymine dimers (TD) from damaged DNA. To elucidate the role of the active site residues in catalysis, their pK(a)'s were evaluated using the semimicroscopic version of the protein dipoles-Langevin dipoles method (PDLD/S). Contributions of different effects to the pK(a) such as charge-charge interactions, conformational rearrangement, protein relaxation, and DNA binding were analyzed in detail. Charging of the active site residues was found to be less favorable in the complex than in the free enzyme. The pK(a) of the N-terminus decreased from 8.01 in the free enzyme to 6.52 in the complex, while the pK(a) of Glu-23 increased from 1. 52 to 7.82, which indicates that the key residues are neutral in the reactant state of the glycosylase step. These pK(a)'s are in agreement with the optimal pH range of the reaction and support the N-terminus acting as a nucleophile. The Glu-23 in its protonated form is hydrogen bonded to O4' of the sugar of 5' TD and can play a role in increasing the positive charge of C1' and, hence, accelerating the nucleophilic substitution. Furthermore, the neutral Glu-23 is a likely candidate to protonate O4' to induce ring opening required to complete the glycosylase step of EndoV. The positively charged Arg-22 and Arg-26 provide an electrostatically favorable environment for the leaving base. To distinguish between S(N)1 and S(N)2 mechanisms of the glycosylase step the energetics of protonating O2 of 5' TD was calculated. The enzyme was found to stabilize the neutral thymine by approximately 3.6 kcal/mol, whereas it destabilizes the protonated thymine by approximately 6.6 kcal/mol with respect to an aqueous environment. Consequently, the formation of a protonated thymine intermediate is unlikely, indicating an S(N)2 reaction mechanism for the glycosylase step.  相似文献   

9.
Harbut MB  Meador M  Dodson ML  Lloyd RS 《Biochemistry》2006,45(23):7341-7346
In recent years, significant progress has been made in determining the catalytic mechanisms by which base excision repair (BER) DNA glycosylases and glycosylase-abasic site (AP) lyases cleave the glycosyl bond. While these investigations have identified active site residues and active site architectures, few investigations have analyzed postincision turnover events. Previously, we identified a critical residue (His16) in the T4-pyrimidine dimer glycosylase (T4-Pdg) that, when mutated, interferes with enzyme turnover [Meador et al. (2004) J. Biol. Chem. 279, 3348-3353]. To test whether comparable residues and mechanisms might be operative for other BER glycosylase:AP-lyases, molecular modeling studies were conducted comparing the active site regions of T4-Pdg and the Escherichia coli formamidopyrimidine DNA glycosylase (Fpg). These analyses revealed that His71 in Fpg might perform a similar function to His16 in T4-Pdg. Site-directed mutagenesis of the Fpg gene and analyses of the reaction mechanism of the mutant enzyme revealed that the H71A enzyme retained activity on a DNA substrate containing an 8-oxo-7,8-dihydroguanine (8-oxoG) opposite cytosine and DNA containing an AP site. The H71A Fpg mutant was severely compromised in enzyme turnover on the 8-oxoG-C substrate but had turnover rates comparable to that of wild-type Fpg on AP-containing DNA. The similar mutant phenotypes for these two enzymes, despite a complete lack of structural or sequence homology between them, suggest a common mechanism for the rate-limiting step catalyzed by BER glycosylase:AP-lyases.  相似文献   

10.
The Escherichia coli Fpg protein is a DNA glycosylase/AP lyase. It removes, in DNA, oxidized purine residues, including the highly mutagenic C8-oxo-guanine (8-oxoG). The catalytic mechanism is believed to involve the formation of a transient Schiff base intermediate formed between DNA containing an oxidized residue and the N-terminal proline of the Fpg protein. The importance and the role of this proline upon the various catalytic activities of the Fpg protein was examined by targeted mutagenesis, resulting in the construction of three mutant Fpg proteins: Pro-2 --> Gly (FpgP2G), Pro-2 --> Thr (FpgP2T), and Pro-2 --> Glu (FpgP2E). The formamidopyrimidine DNA glycosylase activities of FpgP2G and FpgP2T were comparable and accounted for 10% of the wild-type activity. FpgP2G and FpgP2T had barely detectable 8-oxoG-DNA glycosylase activity and produced minute Schiff base complex with 8-oxoG/C DNA. FpgP2G and FpgP2T mutants did not cleave a DNA containing preformed AP site but readily produced Schiff base complex with this substrate. FpgP2E was completely inactive in all the assays. The binding constants of the different mutants when challenged with a duplex DNA containing a tetrahydrofuran residue were comparable. The mutant Fpg proteins barely or did not complement in vivo the spontaneous transitions G/C --> T/A in E. coli BH990 (fpg mutY) cells. These results show the mandatory role of N-terminal proline in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo as well as in its AP lyase activity upon preformed AP site but less in the 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine-DNA glycosylase activity.  相似文献   

11.
The repair of cis-syn cyclobutane pyrimidine dimers (CPDs) can be initiated via the base excision repair (BER) pathway, utilizing pyrimidine dimer-specific DNA glycosylase/lyase enzymes (pdgs). However, prior to incision at lesion sites, these enzymes bind to non-damaged DNAs through charge-charge interactions. Following initial binding to DNA containing multiple lesions, the enzyme incises at most of these sites prior to dissociation. If a subset of these lesions are in close proximity, clustered breaks may be produced that could lead to decreased cell viability or increased mutagenesis. Based on the co-crystal structures of bacteriophage T4-pdg and homology modeling of a related enzyme from Paramecium bursaria Chlorella virus-1, the structure-function basis for the processive incision activity for both enzymes was investigated using site-directed mutagenesis. An assay was developed that quantitatively measured the rates of incision by these enzymes at clustered apurinic/apyrimidinic (AP) sites. Mathematical modeling of random (distributive) versus processive incisions predicted major differences in the rate and extent of the accumulation of singly nicked DNAs between these two mechanisms. Comparisons of these models with biochemical nicking data revealed significant changes in the damage search mechanisms between wild-type pdgs and most of the mutant enzymes. Several conserved arginine residues were shown to be critical for the processivity of the incision activity, without interfering with catalysis at AP sites. Comparable results were measured for incision at clustered CPD sites in plasmid DNAs. These data reveal that pdgs can be rationally engineered to retain full catalytic activity, while dramatically altering mechanisms of target site location.  相似文献   

12.
Lavrukhin OV  Lloyd RS 《Biochemistry》2000,39(49):15266-15271
Formamidopyrimidine glycosylase (Fpg) is an important bacterial base excision repair enzyme, which initiates removal of damaged purines such as the highly mutagenic 8-oxoguanine. Similar to other glycosylase/AP lyases, catalysis by Fpg is known to proceed by a nucleophilic attack by an amino group (the secondary amine of its N-terminal proline) on C1' of the deoxyribose sugar at a damaged base, which results in the departure of the base from the DNA and removal of the sugar ring by beta/delta-elimination. However, in contrast to other enzymes in this class, in which acidic amino acids have been shown to be essential for glycosyl and phosphodiester bond scission, the catalytically essential acidic residues have not been documented for Fpg. Multiple sequence alignments of conserved acidic residues in all known bacterial Fpg-like proteins revealed six conserved glutamic and aspartic acid residues. Site-directed mutagenesis was used to change glutamic and aspartic acid residues to glutamines and asparagines, respectively. While the Asp to Asn mutants had no effect on the incision activity on 8-oxoguanine-containing DNA, several of the substitutions at glutamates reduced Fpg activity on the 8-oxoguanosine DNA, with the E3Q and E174Q mutants being essentially devoid of activity. The AP lyase activity of all of the glutamic acid mutants was slightly reduced as compared to the wild-type enzyme. Sodium borohydride trapping of wild-type Fpg and its E3Q and E174Q mutants on 8-oxoguanosine or AP site containing DNA correlated with the relative activity of the mutants on either of these substrates.  相似文献   

13.
The mammalian DNA glycosylase-methyl-CpG binding domain protein 4 (MBD4)-is involved in active DNA demethylation via the base excision repair pathway. MBD4 contains an N-terminal MBD and a C-terminal DNA glycosylase domain. MBD4 can excise the mismatched base paired with a guanine (G:X), where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we present three structures of the MBD4 C-terminal glycosylase domain (wild-type and its catalytic mutant D534N), in complex with DNA containing a G:T or G:5hmU mismatch. MBD4 flips the target nucleotide from the double-stranded DNA. The catalytic mutant D534N captures the intact target nucleotide in the active site binding pocket. MBD4 specifically recognizes the Watson-Crick polar edge of thymine or 5hmU via the O(2), N(3) and O(4) atoms, thus restricting its activity to thymine/uracil-based modifications while excluding cytosine and its derivatives. The wild-type enzyme cleaves the N-glycosidic bond, leaving the ribose ring in the flipped state, while the cleaved base is released. Unexpectedly, the C(1)' of the sugar has yet to be hydrolyzed and appears to form a stable intermediate with one of the side chain carboxyl oxygen atoms of D534, via either electrostatic or covalent interaction, suggesting a different catalytic mechanism from those of other DNA glycosylases.  相似文献   

14.
BACKGROUND: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. RESULTS: We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G.T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-terminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. CONCLUSION: Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.  相似文献   

15.
The restriction-modification systems use epigenetic modification to distinguish between self and nonself DNA. A modification enzyme transfers a methyl group to a base in a specific DNA sequence while its cognate restriction enzyme introduces breaks in DNA lacking this methyl group. So far, all the restriction enzymes hydrolyze phosphodiester bonds linking the monomer units of DNA. We recently reported that a restriction enzyme (R.PabI) of the PabI superfamily with half-pipe fold has DNA glycosylase activity that excises an adenine base in the recognition sequence (5′-GTAC). We now found a second activity in this enzyme: at the resulting apurinic/apyrimidinic (AP) (abasic) site (5′-GT#C, # = AP), its AP lyase activity generates an atypical strand break. Although the lyase activity is weak and lacks sequence specificity, its covalent DNA–R.PabI reaction intermediates can be trapped by NaBH4 reduction. The base excision is not coupled with the strand breakage and yet causes restriction because the restriction enzyme action can impair transformation ability of unmethylated DNA even in the absence of strand breaks in vitro. The base excision of R.PabI is inhibited by methylation of the target adenine base. These findings expand our understanding of genetic and epigenetic processes linking those in prokaryotes and eukaryotes.  相似文献   

16.
The purification and characterization of a pyrimidine dimer-specific glycosylase/AP lyase from Bacillus sphaericus (Bsp-pdg) are reported. Bsp-pdg is highly specific for DNA containing the cis-syn cyclobutane pyrimidine dimer, displaying no detectable activity on oligonucleotides with trans-syn I, trans-syn II, (6-4), or Dewar photoproducts. Like other glycosylase/AP lyases that sequentially cleave the N--glycosyl bond of the 5' pyrimidine of a cyclobutane pyrimidine dimer, and the phosphodiester backbone, this enzyme appears to utilize a primary amine as the attacking nucleophile. The formation of a covalent enzyme-DNA imino intermediate is evidenced by the ability to trap this protein-DNA complex by reduction with sodium borohydride. Also consistent with its AP lyase activity, Bsp-pdg was shown to incise an AP site-containing oligonucleotide, yielding beta- and delta-elimination products. N-terminal amino acid sequence analysis of this 26 kDa protein revealed little amino acid homology to any previously reported protein. This is the first report of a glycosylase/AP lyase enzyme from Bacillus sphaericus that is specific for cis-syn pyrimidine dimers.  相似文献   

17.
The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues. Human AP endonuclease 1 (APE1) recognizes AP sites produced by DNA glycosylases and incises the phophodiester bond 5' to the damaged site. The repair process is completed by a DNA polymerase and DNA ligase. If not tightly coordinated, base excision repair could generate intermediates that are more deleterious to the cell than the initial DNA damage. The kinetics of AAG-catalyzed excision of two damaged bases, hypoxanthine and 1,N6-ethenoadenine, were measured in the presence and absence of APE1 to investigate the mechanism by which the base excision activity of AAG is coordinated with the AP incision activity of APE1. 1,N6-ethenoadenine is excised significantly slower than hypoxanthine and the rate of excision is not affected by APE1. The excision of hypoxanthine is inhibited to a small degree by accumulated product, and APE1 stimulates multiple turnovers by alleviating product inhibition. These results show that APE1 does not significantly affect the kinetics of base excision by AAG. It is likely that slow excision by AAG limits the rate of AP site formation in vivo such that AP sites are not created faster than can be processed by APE1.  相似文献   

18.
Genomic DNA is prone to oxidation by reactive oxygen species. A major product of DNA oxidation is the miscoding base 8-oxoguanine (8-oxoG). The mutagenic effects of 8-oxoG in mammalian cells are prevented by a DNA repair system consisting of 8-oxoguanine-DNA glycosylase (Ogg1), adenine-DNA glycosylase, and 8-oxo-dGTPase. We have cloned, overexpressed, and characterized mOgg1, the product of the murine ogg1 gene. mOgg1 is a DNA glycosylase/AP lyase belonging to the endonuclease III family of DNA repair enzymes. The AP lyase activity of mOgg1 is significantly lower than its glycosylase activity. mOgg1 releases 8-oxoG from DNA when paired with C, T, or G, but efficient DNA strand nicking is observed only with 8-oxoG:C. Binding of mOgg1 to oligonucleotides containing 8-oxoG:C is strong (K(D) = 51.5 nm), unlike other mispairs. The average residence time for mOgg1 bound to substrate containing 8-oxoG:C is 18.3 min; the time course for accumulation of the NaBH(4)-sensitive intermediate suggests a two-step reaction mechanism. Various analogs of 8-oxoG were tested as substrates for mOgg1. An electron-withdrawing or hydrogen bond acceptor moiety at C8 is required for efficient binding of mOgg1. A substituent at C6 and a keto group at C8 are required for cleavage. The proposed mechanism of 8-oxoG excision involves protonation of O(8) or the deoxyribose oxygen moiety.  相似文献   

19.
DNA continuously undergoes oxidation damage from both exogenous and endogenous sources, including ionizing radiation, ultraviolet light, and products of metabolism. Replication of damaged DNA sometimes gives rise to mutations which can contribute to disease and aging. One of the most mutagenic lesions caused by DNA oxidation is 7,8-dihydro-8-oxoguanine (oxoG), which, if not repaired, results in G?→?T transversions. In human cells, oxoG is repaired through excision by 8-oxoguanine-DNA glycosylase hOGG1. In addition to its glycosylase activity, hOGG1 possesses an AP-lyase activity, which catalyzes the elimination of the 3’-phosphate (β-elimination) at the nascent, or preformed abasic (AP) site. The glycosidic bond breakage is initiated by a nucleophilic attack at C1’ by the Lys-249 residue resulting in a covalent enzyme–DNA-Schiff base intermediate, which then rearranges, and undergoes elimination. The 3-D structure of hOGG1shows that DNA binding is accompanied with drastic conformational changes, including DNA kinking, eversion of oxoGua from the double helix, and insertion of few amino acid residues into DNA. Previously (Kuznetsov et al., 2005, 2007), we have studied the stopped-flow kinetics of oxoG and AP site lesions processing by hOGG1. The character of tryptophan and 2-aminopurine fluorescence traces revealed that both the protein and the damaged DNA undergo extensive conformational changes in the course of DNA substrate binding- and -cleavage. To understand better, the mechanism by which hOGG1 recognizes DNA lesions, we have examined the influence of amino acid substitutions on conformational dynamics of hOGG1 and DNA during specific site recognition and conversion. Fluorescence kinetics of enzyme mutant forms F45?W, F319?W, Y203?W, Y203A, H270?W, K249Q demonstrated the multistep character of catalytic process and made clear the role of these amino acids for hOGG1 catalysis.  相似文献   

20.
The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A and G:A mispairs in DNA. DNA strand cleavage via beta-elimination (beta-lyase) activity coupled with MutY's removal of misincorporated adenine bases was sought using both qualitative and quantitative methods. The qualitative assays demonstrate formation of a Schiff base intermediate which is characteristic of DNA glycosylases catalyzing a concomitant beta-lyase reaction. Borohydride reduction of the Schiff base results in the formation of a covalent DNA-MutY adduct which is easily detected in SDS-PAGE experiments. However, quantitative activity assays which monitor DNA strand scission accompanying base release suggest MutY behaves as a simple monofunctional glycosylase. Treatment with base effects DNA strand cleavage at apurinic/apyrimidinic (AP) sites arising via simple glycosylase activity. The amount of cleaved DNA in MutY reactions treated with base is much greater than that in non-base treated reactions, indicating that AP site generation by MutY is not associated with a concomitant beta-lyase step. As standards, identical assays were performed with a known monofunctional enzyme (uracil DNA glycosylase) and a known bifunctional glycosylase/lyase (FPG), the results of which were used in comparison with those of the MutY experiments. The apparent inconsistency between the data obtained for MutY by the qualitative and quantitative methods underscores the current debate surrounding the catalytic activity of this enzyme, and a detailed explanation of this controversy is proposed. The work presented here lays ground for the identification of specific active site residues responsible for the chemical mechanism of MutY enzyme catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号