首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Recent work has emphasised the benefit of using functional measures when relating biodiversity to ecosystem functioning. In this study, we investigated the extent to which functional and taxonomic diversity might be related to summed biovolume in community assemblages of 212 species of diatoms collected from 65 temperate lakes in western and central Quebec, Canada. 2. We quantified functional diversity as both the total path‐length of a functional dendrogram (FD) and the variance in species traits (TV) for a given community. Selected traits included both size and responses to a set of environmental variables known to be influential for diatom communities. 3. Species richness, as well as both FD and TV, was positively associated with total diatom biovolume at the level of the entire diatom community, suggesting that diversity in response types (particularly to total phosphorus and pH) is important for diatom community production. 4. Although functional measures of diversity did not provide enhanced explanatory power over species richness, we argue that an exploration of functional traits potentially allows greater insight into the mechanisms underlying biodiversity–ecosystem functioning relations, indicating which traits might be most influential in driving community biomass production.  相似文献   

2.
One of the central questions of metacommunity theory is how dispersal of organisms affects species diversity. Here, we show that the diversity–dispersal relationship should not be studied in isolation of other abiotic and biotic flows in the metacommunity. We study a mechanistic metacommunity model in which consumer species compete for an abiotic or biotic resource. We consider both consumer species specialised to a habitat patch, and generalist species capable of using the resource throughout the metacommunity. We present analytical results for different limiting values of consumer dispersal and resource dispersal, and complement these results with simulations for intermediate dispersal values. Our analysis reveals generic patterns for the combined effects of consumer and resource dispersal on the metacommunity diversity of consumer species, and shows that hump‐shaped relationships between local diversity and dispersal are not universal. Diversity–dispersal relationships can also be monotonically increasing or multimodal. Our work is a new step towards a general theory of metacommunity diversity integrating dispersal at multiple trophic levels.  相似文献   

3.
Microalgae biofuel production can be feasible when a second function is added, such as wastewater treatment. Microalgae differ in uptake of phosphorus (P) and growth, making top performer identification fundamental. The objective of this screen was to identify dual‐purpose candidates capable of high rates of P removal and growth. Three freshwater – Chlorella sp., Monoraphidium minutum sp., and Scenedesmus sp. – and three marine – Nannochloropsis sp., N. limnetica sp., and Tetraselmis suecica sp. – species were batch cultured in 250 mL flasks over 16 days to quantitate total phosphorus (TP) removal and growth as a function of P loads (control, and 5, 10, and 15 mg L?1 enrichment of control). Experimental design used 100 μmol m?2 s?1 of light, a light/dark cycle of 14/10 h, and no CO2 enrichment. Phosphorus uptake was dependent on species, duration of exposure, and treatment, with significant interaction effects. Growth was dependant on species and treatment. Not all species showed increased P removal with increasing P addition, and no species demonstrated higher growth. Nannochloropsis sp and N. limnetica sp. performed poorly across all treatments. Two dual‐purpose candidates were identified. At the 10 mg L?1 treatment Monoraphidium minutum sp. removed 67.1% (6.66 mg L?1 ± 0.60 SE) of TP at day 8, 79.3% (7.86 mg L?1 ± 0.28 SE) at day 16, and biomass accumulation of 0.63 g L?1 ± 0.06 SE at day 16. At the same treatment Tetraselmis suecica sp. removed 79.4% (6.98 mg L?1 ± 0.24 SE) TP at day 8, 83.0% (7.30 mg L?1 ± 0.60 SE) at day 16, and biomass of 0.55 g L?1 ± 0.02 SE at day 16. These species merit further study using high‐density wastewater cultures and lipid profiling to assess suitability for a nutrient removal and biomass/biofuel production scheme.  相似文献   

4.
Previous studies have shown that switchgrass has a wide range of genetic variation and that productivity is linked to local adaptation to the location of origin for many cultivars. In this meta‐analysis, we compiled and analyzed 900 observations associated with 41 field trials for four switchgrass cultivars (two lowlands, Alamo and Kanlow, and two uplands, Cave‐In‐Rock and Shelter). This extensive dataset and machine learning were used to identify the most influential variables impacting switchgrass productivity, to search for evidence of local adaptation to each cultivar's location of origin, and to predict change in productivity under future climate for each cultivar. In general, variables associated with climate and management are more important predictors of productivity relative to soil variables. Three climatic variables, annual mean temperature, annual precipitation, and precipitation in the wettest month, are identified as key environmental variables for productivity of all cultivars. Productivity under future climate (2041–2060) is predicted to stay stable for all cultivars relative to the prediction under current climate (1986–2005) across all trial locations and over a 20‐year simulation period. However, the productivity of each cultivar varies from location to location and from year to year, although productivity varies more between locations than between years. Additionally, we observe shifts in the most productive cultivar at the local field scale depending on the combination of management practice and climates. The shape of the relationship between productivity and the annual mean temperature relative to the cultivar's location of origin is a bell‐shaped curve for Kanlow, Cave‐in‐Rock, and Shelter, indicative of local adaptation. Identifying influential environmental variables and their relationships to productivity with respect to cultivar's location of origin help predicting productivity on the local field scale, and will help with the biofuel production planning through the selection of suitable cultivars for different locations under climate changes.  相似文献   

5.

Aim

The mechanisms determining the distribution of the number of sites species occupy, the occupancy frequency distribution (OFD), remain incompletely understood despite decades of research. To explore the dominant mechanisms responsible for the shape and temporal dynamics of empirical OFD, we develop a simple patch occupancy framework with intrinsically regulated local richness and fit the model to a highly replicated dataset describing macroinvertebrate, macrophyte and diatom occupancy.

Location

England.

Time period

Up to 30 years between 1990 and 2020.

Major taxa studied

Macroinvertebrates, macrophytes and diatoms.

Methods

We study the OFD in a highly replicated dataset of freshwater metacommunities in England across time. We consider temporal change in species richness, composition, and in the shape of the OFD. Goodness-of-fit of the steady state of a simple patch occupancy model—which predicts a log-series OFD—to the empirical observations is assessed. Additionally, we test the capacity of the model to predict metacommunity-scale processes.

Results

Our model provides a consistently good fit to empirical OFDs. It can additionally be used to predict metacommunity-scale species turnover.

Main conclusions

Our results support the view that metacommunity structure reflects a dynamic steady state controlled by local limits to coexistence.  相似文献   

6.
Climate models predict widespread shifts in precipitation patterns and increases in the frequency of extreme events such as droughts, but consequences for key processes in affected ecosystems remains poorly understood. A 2‐year manipulative experiment used a series of stream mesocosms to test the effect of recurrent drought disturbance on the composition and secondary production of macroinvertebrate consumer assemblages and functional groups. On average, secondary production in drought‐disturbed communities (mean 4.5 g m?2 yr?1) was less than half of that that in controls (mean 10.4 g m?2 yr?1). The effects of the drought differed among functional feeding groups, with substantial declines for detritivore shredders (by 69%) and engulfing predators (by 94%). Contrasting responses were evident among taxa within most functional feeding groups, ranging from extirpation to irruptions in the case of several small midge larvae, but production of most species was suppressed. Taxon‐specific responses were related to body mass and voltinism. The ratio of production to biomass (community P/B) increased under drought, reflecting a shift in production from large long‐lived taxa to smaller taxa with faster life cycles. This research provides some of the first experimental evidence of the profound effects that droughts can have on both the structure and functioning of aquatic ecosystems.  相似文献   

7.
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models.  相似文献   

8.
青藏高原多年冻土区高寒植被物种多样性和地上生物量   总被引:2,自引:0,他引:2  
基于样方调查统计了青藏高原多年冻土区高寒草地生态系统植物的科属组成,计算了多样性指数和均匀度指数,探讨了多年冻土退化对高寒草地物种多样性的影响。结果表明:多年冻土退化过程中物种组成在属和物种丰富度上呈现降低趋势,湿、中生植物逐渐被旱中生和旱生植物替代;青藏高原多年冻土退化会导致高寒草地生态系统的物种多样性和初级生产力的降低,影响高寒草地生态系统的稳定性;物种多样性与初级生产力具有密切的抛物线型关系。  相似文献   

9.
Aims: Mixed-species forests are known to be highly productive systems because of their high species diversity, including taxonomic diversity (species richness) and structural diversity. Recent empirical evidence also points to plant maximum height, as a functional trait that potentially drives forest above-ground biomass (AGB). However, the interrelations between these biotic variables are complex, and it is not always predictable if structural diversity attributes or functional metrics of plant maximum height would act as the most important determinant of stand biomass. Here we evaluated the relative importance of structural diversity attributes and functional metrics of plant maximum height (Hmax) in predicting and mediating AGB response to variation in species richness in mixed-species forests, while also accounting for fine-scale environmental variation. Location: Northern Benin. Methods: We used forest inventory data from mixed-species stands of native and exotic species. We quantified structural diversity as coefficient of variation of tree diameter at breast height (CVdbh) and of height (CVHt). For plant Hmax, we computed three metrics: functional range (FRHmax), functional divergence (FDHmax) and community-weighted mean (CWMHmax). We used topographical variables such as elevation and slope to account for possible environmental effects. Simple and multiple mixed-effects models, and structural equation models were performed to assess the direct and indirect links of AGB with species richness through structural diversity attributes and functional metrics of plant Hmax. Results: Species richness and CVdbh were positively related to AGB, while functional metrics of plant Hmax were not. Structural equation models revealed that species richness influenced AGB indirectly via CVdbh, which alone strongly promoted AGB. Elevation only had a positive direct effect on AGB. While increasing species richness enhanced CVdbh and functional measures of plant Hmax, there was no support for the latter mediating the effects of species richness on AGB. Conclusion: Structural diversity has a significant advantage in predicting and mediating the positive effect of species richness on AGB more so than functional measures of plant Hmax. We argue that structural diversity acts as a mechanism for the species richness–AGB relationship, and that maintaining high structural diversity would enhance biomass in mixed-species forests.  相似文献   

10.
11.
12.
Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta‐analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta‐analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P‐induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future.  相似文献   

13.
14.
Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr?1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr?1), river/stream evasion (158 ± 50 TgC yr?1), and fire emissions (142 ± 45 TgC yr?1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.  相似文献   

15.
The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4‐ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield, and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one‐third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year‐to‐year variation in yields was lowest in the three‐cultivar switchgrass mixtures and Cave‐In‐Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high‐quality biomass feedstocks.  相似文献   

16.
Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon–nitrogen interactions tend to be more realistic. Using observation‐based estimates of global photosynthesis, we quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).  相似文献   

17.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

18.
张平究  李恋卿  潘根兴  张俊伟 《生态学报》2004,24(12):2818-2824
农业管理措施影响下土壤微生物群落结构的变化是农业土壤质量研究的前沿问题。运用化学分析方法和 PCR- DGGE技术从土壤微生物碳氮量及基因多样性角度研究了长期不同施肥措施下太湖地区代表性水稻土 -黄泥土的表土微生物活性与分子多样性的变化。结果表明 ,施用化肥以及化肥和有机肥配施在提高土壤有机碳含量的同时 ,不仅提高了水稻土的微生物碳氮量 ,而且改变了微生物的群落结构 ;与长期单施化肥相比 ,长期化肥配施有机肥不仅显著提高了土壤微生物碳氮量 ,而且提高了土壤微生物的分子多样性 ;就土壤的微生物分子群落相似性来说 ,单施化肥下与未施肥下相近 ,而化肥配施秸秆下与化肥配施猪粪下接近 ,说明土壤的有机培肥对土壤微生物群落结构有重要影响。长期单施化肥下水稻产量的年际波动性显著大于化肥配施有机肥下 ,这进一步佐证了化肥配施有机肥显著促进了水稻土的生态系统初级生产力与较高的土壤生态系统稳定性。应用PCR- DGGE技术所揭示的微生物分子群落结构特点可以指示水稻土 10 a尺度的不同农业管理措施下的土壤质量变化  相似文献   

19.
20.
Trophic control of grassland production and biomass by pathogens   总被引:3,自引:0,他引:3  
Current theories of trophic regulation of ecosystem net primary production and plant biomass incorporate herbivores, but not plant pathogens. Obstacles to the incorporation of pathogens include a lack of data on pathogen effects on primary production, especially outside agricultural and forest ecosystems, and an apparent inability to quantify pathogen biomass. Here, I report the results of an experiment factorially excluding foliar fungal pathogens and insect herbivores from an intact grassland ecosystem. At peak in control plots, 8.9% of community leaf area was infected by pathogens. Disease reduction treatment dramatically increased root production and biomass by increasing leaf longevity and photosynthetic capacity. In contrast, herbivory reduction had no detectable effects at the ecosystem or leaf scale. Additionally, biomass of foliar fungal pathogens in the ecosystem was comparable with that of insect herbivores. These results identify pathogens as potential regulators of ecosystem processes and promote the incorporation of pathogens into trophic theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号