首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work on the Glanville fritillary butterfly (Melitaea cinxia) shows substantial inbreeding depression in both of our two study regions, Finland and southern France. The influence of inbreeding depression on population dynamics should depend on the strength of inbreeding avoidance. We conducted mate choice experiments to ascertain whether and to what extent butterflies avoid mating with their sibs. Experiments with similar design were done in the laboratory with Finnish butterflies and in the field with French butterflies. Each female was given a choice of mates with equal opportunity to mate with a sib or with a non-sib. In neither experiment was there a trend towards avoidance of sib mating. 95% confidence intervals for the proportion of non-sib matings were 12–62% in the laboratory experiment and 28–69% in the field experiment. Any preference for non-sibs must be slight, and can provisionally be ignored in modelling the dynamics of M. cinxia populations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The amount and spatial distribution of genetic variation that is maintained in a metapopulation depends critically on the colonization process. Here, we use molecular markers to determine the number and genetic relatedness of individuals establishing new local populations in a large metapopulation of the Glanville fritillary butterfly Melitaea cinxia. The empirical results are compared with the predictions of a dispersal model based on a diffusion approximation of correlated random walk, which serves as a base‐line hypothesis about the rate and pattern of colonization. The results show that half of the new local populations consisted of a single larval group of full sibs and hence necessarily of the offspring of a single female. If the colonization involved two or more larval groups, these were usually oviposited by two different females that were unrelated to each other. The pattern of colonizations is thus intermediate between the propagule pool and the migrant pool models. These results elucidate the generation of genetic stochasticity, which may influence the dynamics of small populations. The dispersal model predicted well the pattern of habitat occupancy and the pattern of colonizations in relation to landscape structure, though which particular habitat patches became colonized was influenced also by measures of habitat quality not included in the model.  相似文献   

3.
If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.  相似文献   

4.
Fragmented populations may face high risk of extinction due to the deleterious consequences of increased inbreeding or of genetic drift in small and isolated populations. Theories on the mechanisms of inbreeding depression predict that the severity of inbreeding depression can eventually decrease in populations that persistently inbreed, and hence populations that are isolated through habitat fragmentation might experience a decrease in inbreeding depression over time. In this study, we tested this hypothesis using the patchily distributed, outcrossing annual plant, Clarkia concinna concinna (Onagraceae), which naturally experiences many fragmentation effects. We collected seeds from isolated and central subpopulations and created artificially inbred and outcrossed lines. Progeny from these crosses were planted into the field and greenhouse and assayed for fitness traits over the course of a growing season. Overall, inbreeding depression was substantial, ranging as high as 0.76 (for cumulative fitness in the field), and significant for plant height, fecundity, and above-ground biomass in all experiments. No inbreeding depression was detected for germination or survival rates in the greenhouse experiments, but in the field, survival was significantly depressed for inbred progeny. There was no evidence to support our hypothesis that increased inbreeding in isolated populations would lead to the purging of deleterious alleles and a decrease in the severity inbreeding depression. The most likely hypothesis to explain our results is that purging is not occurring more strongly in the isolated populations due to details of a number of genetic factors (e.g., selection against deleterious alleles is inconsistent or insufficient, or drift has caused fixation of deleterious alleles in these populations). This study supports the view that even when inbreeding depression is predicted to be less problematic, it may still be an important force influencing the fitness of populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The effects of self-fertilization, within-population crosses (WPC) and between-population crosses (BPC) on progeny fitness were investigated in the greenhouse for Scabiosa columbaria populations of varying size. Plants grown from field collected seeds were hand pollinated to produce selfed, WPC, and BPC progeny. The performance of these progenies was examined throughout the entire life cycle. The different pollination treatments did not significantly affect germination, seedling-to-adult survival, flowering percentage and the number of flower heads. But severe inbreeding depression was demonstrated for biomass production, root development, adult survival, and seed set. Additionally, multiplicative fitness functions were calculated to compare relative fitnesses for progeny. On average, WPC progeny showed a more than 4-fold, and BPC progeny an almost 10-fold, advantage over selfed progeny, indicating that S. columbaria is highly susceptible to inbreeding. No clear relationship was found between population size and level of inbreeding depression, suggesting that the genetic load has not yet been reduced substantially in the small populations. A significant positive correlation was found between plant dry weight and total fitness. In two out of six populations, the differences between the effects of the pollination treatments on dry weight increased significantly when seedlings were grown under competitive conditions. This result is interpreted as an enhancement of inbreeding depression under these conditions. It is argued that improvement of the genetic exchange between populations may lower the probability of population extinction.  相似文献   

6.
We investigated the reproductive system of the threatened taxon Dombeya acutangula ssp. acutangula Cav. (Sterculiaceae), an endemic tree of the Mascarene archipelago (Indian Ocean). A controlled crossing experiment was performed in two natural populations located in the remnants of the low-elevation dry forest on the island of La Réunion. Active pollination, probably mainly by insects, was necessary for reproduction in this species. Individuals varied in their degree of self-sterility from 0 to 100%. Outcrossing between nearby individuals produced lower seed set than did crosses between more distant individuals within one of the two tested populations. The variation in reproductive success on selfing and in the different types of crosses could result from inbreeding depression causing embryo death, and we provide evidence that progenies from selfing have lower seed size and quality. However, for inbreeding depression to account for the dramatic variation in seed set found in our crossing experiment, the distribution of genetic load and number of lethal factors required appear unrealistic. We favour an alternative interpretation, that D. acutangula possesses an incompatibility system similar to that found in other Sterculiaceae species such as Theobroma cacao L. Such an incompatibility system allows a certain amount of selfing, and different individuals vary in their degree of self-incompatibility. The low success of crosses among close neighbours in one population suggests that there was spatial structure for incompatibility alleles in that population. This could partly explain the decline of the species in fragmented and disturbed habitats, since relatedness at incompatibility loci may increase in small or isolated population and thus reduce mate availability. Received: 2 March 1998 / Accepted: 3 August 1998  相似文献   

7.
Michaels HJ  Shi XJ  Mitchell RJ 《Oecologia》2008,154(4):651-661
We investigated the relationships among population size, offspring performance, and inbreeding depression (δ) in Lupinus perennis by examining the effect of population size category (large vs. small) on seed production and offspring performance for three pollination treatments (open pollination, hand crossing and hand selfing). In each of our four pairs of populations, one member of the pair was substantially larger than the other. We then grew seeds from this factorial design (2 sizes × 4 pairs × 3 pollination treatments) in the greenhouse to investigate whether population size affects offspring performance in a common environment, and how small size affects purging of the inbreeding load. Multiplicative performance across four early life-stage components (seed production, seedling emergence, seedling survival and seedling growth) of smaller populations was not significantly lower, although biomass of seedlings declined in smaller populations. Self-pollination reduced seed production, seedling emergence and seedling growth, reflecting substantial inbreeding depression (δ = 0.404 ± 0.043). Population size categories did not consistently differ in levels of inbreeding depression, suggesting that purging of genetic load in smaller populations has been limited, and that all populations still harbor inbreeding load. We also found a significant decrease in log performance with increases in the population inbreeding coefficient. These results indicate that even in seemingly large populations, lupines are susceptible to considerable fitness declines through both inbreeding load within populations, and drift load via genetic erosion and fixation of deleterious alleles between populations.  相似文献   

8.
In fragmented landscapes, small populations may be subjected to inbreeding or genetic drift. Gene flow is expected to alleviate the burden of deleterious mutations in such populations. The beneficial effects of outcrossing may, however, depend on life history characteristics such as the species’ breeding system. Frequent selfing is expected to purge (sub)lethal alleles and mitigate inbreeding depression, at least if the load of mildly deleterious mutations has not accumulated through genetic drift in populations with a small effective size. Gene-inflow from distant source populations can cause outbreeding depression due to genomic incompatibilities. We tested these predictions using highly fragmented populations of the self-compatible forest herb Geum urbanum. Assessment of mating system parameters using microsatellite markers inferred high selfing rates (92.5%), confirming the predominantly self-fertilizing character of the study species. We conducted experimental pollinations with self and outcross pollen collected from populations at different distances from the target populations. There were no significant signs of inbreeding depression, even in very small target populations. Except for a minor negative effect on the germination rate for the long-distance crosses, we found no effects of outbreeding on fitness estimates.  相似文献   

9.
The inbreeding avoidance hypothesis predicts that organisms that often encounter relatives as potential mates should evolve behaviours to avoid incestuous matings. Avoidance behaviours have practical importance for small populations because deleterious genetic processes may be less imminent than otherwise expected from genetic models that assume random mating. I used genetic techniques to investigate the extent of inbreeding and inbreeding avoidance behaviours in rare lizards from southern New Zealand. Grand skinks, Oligosoma grande, live in small patchily distributed groups, and have low rates of inter-group dispersal (ca. 3–20% disperse). I used data from 15 microsatellite loci to test the hypothesis that adults are likely to encounter kin as potential mates and will inbreed. These data showed that adult skinks usually inhabited rock outcrops with adult relatives of the opposite sex – up to 35% of potential mates were of equivalent relatedness as half-sibs and 17% were equivalent to full sibs. However, skinks did not preferentially breed with less related mates, and 18.2% of matings were between individuals of equivalent relatedness as full-sibs. Instead, skinks mated with partners of all levels of relatedness, and were promiscuous – almost half of adult females and nearly three quarters of adult males reproduced with multiple partners. In addition, inbreeding had no effect on survival of offspring in their first year. Two other putative mechanisms of inbreeding avoidance, sex-biased and natal dispersal, were not pronounced in this species. This study adds to a growing list of species that inbreed despite the risks.  相似文献   

10.
We examined the effect of self- and cross-pollination on germination success, flowering probability, pollen and ovule production, survivorship, and adult aboveground biomass in two species of Mimulus with contrasting mating systems: the highly seifing M. micranthus and an outcrossing population of M. guttatus. Cross-pollinations were performed both within and between populations in order to examine the scale at which the genetic load is distributed. We found significant inbreeding depression in M. guttatus in four of the six traits, with the highest inbreeding depression observed in biomass (68% and 69% based on within- and between-population crosses, respectively) and lowest in ovule production (21% based on between-population crosses only). M. micranthus displayed significant inbreeding depression in only two of the six traits examined. Again, we observed the highest inbreeding depression in biomass (47–60% based on within- and between-population crosses, respectively), but both traits showing significant differences between self and outcross progeny expressed lower inbreeding depression than in M. guttatus. We detected no significant inbreeding depression for either pollen or ovule production in M. micranthus. An estimate of total inbreeding depression based on the multiplicative effects of all traits was also lower in M. micanthus than∗∗∗ in M. guttatus. Our results are consistent with the expected purging of genetic load in populations with high selfing rates. The absence of inbreeding depression in M. micranthus pollen and ovule production, two traits with strong links to fitness in a selfing annual, further suggests the important role of directional selection in determining the population's genetic load. Comparison of cross-pollinations made within and between populations revealed little evidence of divergence of genetic load among the M. micranthus and M. guttatus populations examined.  相似文献   

11.
Willi Y  Van Buskirk J  Fischer M 《Genetics》2005,169(4):2255-2265
A decline in population size can lead to the loss of allelic variation, increased inbreeding, and the accumulation of genetic load through drift. We estimated the fitness consequences of these processes in offspring of controlled within-population crosses from 13 populations of the self-incompatible, clonal plant Ranunculus reptans. We used allozyme allelic richness as a proxy for long-term population size, which was positively correlated with current population size. Crosses between plants of smaller populations were less likely to be compatible. Inbreeding load, assessed as the slope of the relationship between offspring performance and parental kinship coefficients, was not related to population size, suggesting that deleterious mutations had not been purged from small populations. Offspring from smaller populations were on average more inbred, so inbreeding depression in clonal fitness was higher in small populations. We estimated variation in drift load from the mean fitness of outbred offspring and found enhanced drift load affecting female fertility within small populations. We conclude that self-incompatibility systems do not necessarily prevent small populations from suffering from inbreeding depression and drift load and may exacerbate the challenge of finding suitable mates.  相似文献   

12.
Quantifying the impacts of inbreeding and genetic drift on fitness traits in fragmented populations is becoming a major goal in conservation biology. Such impacts occur at different levels and involve different sets of loci. Genetic drift randomly fixes slightly deleterious alleles leading to different fixation load among populations. By contrast, inbreeding depression arises from highly deleterious alleles in segregation within a population and creates variation among individuals. A popular approach is to measure correlations between molecular variation and phenotypic performances. This approach has been mainly used at the individual level to detect inbreeding depression within populations and sometimes at the population level but without consideration about the genetic processes measured. For the first time, we used in this study a molecular approach considering both the interpopulation and intrapopulation level to discriminate the relative importance of inbreeding depression vs. fixation load in isolated and non-fragmented populations of European tree frog (Hyla arborea), complemented with interpopulational crosses. We demonstrated that the positive correlations observed between genetic heterozygosity and larval performances on merged data were mainly caused by co-variations in genetic diversity and fixation load among populations rather than by inbreeding depression and segregating deleterious alleles within populations. Such a method is highly relevant in a conservation perspective because, depending on how populations lose fitness (inbreeding vs. fixation load), specific management actions may be designed to improve the persistence of populations.  相似文献   

13.
Cypripedium calceolus has suffered an alarming decline, and today mainly occurs in small and isolated populations. In Denmark there are only two populations, close to each other and situated far from other European stands. One population is stagnant or in slow decline, whereas the other is in rapid increase. We examined the levels of genetic diversity and compatibility and seed quality following experimental crosses. No genetic variation could be detected in plastid and nuclear markers within or between the two populations—in contrast to results previously reported from other European populations of C. calceolus. This may indicate a founder effect in both populations, but it could also be the outcome of prolonged inbreeding or reflect a genetic bottleneck after the populations were established. According to fruit dimensions and frequency of fully developed seeds there was full self-compatibility in the stagnant population, and partial late-acting self-incompatibility in the proliferating population. In combination with previous reports from other countries, this suggests that several self-incompatibility systems may occur in C. calceolus. Seeds from the older and stagnant population performed more poorly in germination tests in vitro than seeds from the thriving population. The difference needs not be genetically based, but could be due to environmental differences during seed maturation, producing different seed quality or dormancy characteristics. However, low level of genetic diversity within the populations may affect their ability to adapt and the possibility of inbreeding depression should be investigated.  相似文献   

14.
The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs of Arabidopsis thaliana from 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (median FST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.  相似文献   

15.
Small and isolated populations face threats from genetic drift and inbreeding. To rescue populations from these threats, conservation biologists can augment gene flow into small populations to increase variation and reduce inbreeding depression. Spectacular success stories include greater prairie chickens in Illinois (Westermeier et al. 1998 ), adders in Sweden (Madsen et al. 1999 ) and panthers in Florida (Johnson et al. 2010 ). However, we also know that performing such crosses risks introducing genes that may be poorly adapted to local conditions or genetic backgrounds. A classic example of such ‘outbreeding depression’ occurred when different subspecies of ibex from Turkey and the Sinai were introduced to assist recovery of an ibex population in Czechoslovakia (Templeton 1986 ). Despite being fertile, the hybrids birthed calves too early, causing the whole population to disappear. In the face of uncertainty, conservation biologists have tended to respect genetic identity, shying away from routinely crossing populations. In this issue of Molecular Ecology, Frankham ( 2015 ) compiles empirical data from experimental studies to assess the costs and benefits of between‐population crosses (Fig.  1 ). Crosses screened to exclude those involving highly divergent populations or distinct habitats show large heterosis with few apparent risks of outbreeding depression. This leads Frankham to advocate for using assisted gene flow more widely. But do the studies analysed in this meta‐analysis adequately test for latent outcrossing depression?  相似文献   

16.
Summary The amount of genetic variation within a population is, among other things, related to population size. In small populations loss of genetic variation due to high levels of genetic drift and inbreeding may result in decline of individual fitness and increase the chance of population extinction. This chain of processes is known as genetic erosion. In this study we tested the genetic erosion hypothesis by investigating the relation between morphological variation and population size in two perennial, outbreeding plant species, Salvia pratensis and Scabiosa columbaria. To relate phenotypic variation to genetic variation the experiments were performed under common environmental conditions. For both species a positive correlation was observed between the amount of phenotypic variation and population size (Salvia r=0.915; Scabiosa r=0.703). Part of this variation is likely to have a genetic base, although maternal effects were present in the seedling and juvenile life stages. Differences between populations could in both species be attributed to parameters related to fitness, i.e. growth rate in Salvia and reproductive effort in Scabiosa. Discriminant functions reflecting these parameters did not however discriminate between large and small populations.Results are discussed in relation to the common environment approach and to electrophoretic results obtained earlier (Van Treuren et al. 1991).  相似文献   

17.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

18.
Hymenaea stigonocarpa is a neotropical tree that is economically important due to its high‐quality wood; however, because it has been exploited extensively, it is currently considered threatened. Microsatellite loci were used to investigate the pollen and seed dispersal, mating patterns, spatial genetic structure (SGS), genetic diversity, and inbreeding depression in H. stigonocarpa adults, juveniles, and open‐pollinated seeds, which were sampled from isolated trees in a pasture and trees within a forest fragment in the Brazilian savannah. We found that the species presented a mixed mating system, with population and individual variations in the outcrossing rate (0.53–1.0). The studied populations were not genetically isolated due to pollen and seed flow between the studied populations and between the populations and individuals located outside of the study area. Pollen and seed dispersal occurred over long distances (>8 km); however, the dispersal patterns were isolated by distance, with a high frequency of mating occurring between near‐neighbor trees and seeds dispersed near the parent trees. The correlated mating for individual seed trees was higher within than among fruits, indicating that fruits present a high proportion of full‐sibs. Genetic diversity and SGS were similar among the populations, but offspring showed evidence of inbreeding, mainly originating from mating among related trees, which suggests inbreeding depression between the seed and adult stages. Selfing resulted in a higher inbreeding depression than mating among relatives, as assessed through survival and height. As the populations are not genetically isolated, both are important targets for in situ conservation to maintain their genetic diversity; for ex situ conservation, seeds can be collected from at least 78 trees in both populations separated by at least 250 m.  相似文献   

19.
This paper examines the effect of inbreeding level of population on the magnitude of inbreeding depression expressed by comparing them between two cultured populations (A and B) in the hermaphroditic animal of the bay scallop Argopecten irradians irradians. Population A is expected to have less genetic variations and higher inbreeding level due to longer cultured history (20 generations) and less “ancestral” individuals (26 individuals) than population B due to shorter cultured history (4 generations) and more “ancestral” individuals (406 individuals). Two groups within each population were produced, one using self-fertilization and one using mass-mating within the same population. Selfed offspring (AS and BS) from two populations both had lower fitness components than their mass-mated counterparts (AM and BM) and exhibited inbreeding depression for all examined traits, e.g. lower hatching, less viability and slower growth, indicating that inbreeding depression is a common feature in this animal. Fitness components in all traits of offspring from population A significantly differed those from population B and the magnitude of inbreeding depression for all traits in population A with higher inbreeding level was significantly smaller than that in population B with lower inbreeding level, indicating that both fitness components and magnitude of inbreeding depression were significantly affected by inbreeding level of populations and genetic load harbored in population A may be partially purged through inbreeding. Moreover, the magnitude of inbreeding depression in the two populations both varied among traits and life history stages. The present results support the partial-dominance hypothesis of inbreeding depression.  相似文献   

20.
Reduced population size is thought to have strong consequences for evolutionary processes as it enhances the strength of genetic drift. In its interaction with selection, this is predicted to increase the genetic load, reduce inbreeding depression, and increase hybrid vigor, and in turn affect phenotypic evolution. Several of these predictions have been tested, but comprehensive studies controlling for confounding factors are scarce. Here, we show that populations of Daphnia magna, which vary strongly in genetic diversity, also differ in genetic load, inbreeding depression, and hybrid vigor in a way that strongly supports theoretical predictions. Inbreeding depression is positively correlated with genetic diversity (a proxy for Ne), and genetic load and hybrid vigor are negatively correlated with genetic diversity. These patterns remain significant after accounting for potential confounding factors and indicate that, in small populations, a large proportion of the segregation load is converted into fixed load. Overall, the results suggest that the nature of genetic variation for fitness‐related traits differs strongly between large and small populations. This has large consequences for evolutionary processes in natural populations, such as selection on dispersal, breeding systems, ageing, and local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号