首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two 5'-modified (2'-5')(A)4 oligomers with an increased resistance to phosphatase degradation were synthesized and evaluated for their ability to develop an antiviral response when introduced into intact cells by microinjection or by chemical conjugation to poly(L-lysine). The enzymatic synthesis of 5'-gamma-phosphorothioate and beta,gamma-difluoromethylene (2'-5')(A)4 from adenosine 5'-O-(3-thiotriphosphate) and adenosine beta,gamma-difluoromethylenetriphosphate by (2'-5')-oligoadenylate synthetase is described. The isolation and characterization of these (2'-5')(A)4 analogues were achieved by high-performance liquid chromatography. The structures of 5'-modified tetramers were corroborated by enzyme digestion. These two 5'-modified tetramers compete as efficiently as natural (2'-5')(A)4 for the binding of a radiolabeled (2'-5')(A)4 probe to ribonuclease (RNase) L. Nevertheless, at the opposite to 5'-gamma-phosphorothioate (2'-5')(A)4, beta,gamma-difluoromethylene (2'-5')(A)4 failed to induce an antiviral response after microinjection in HeLa cells. In addition, it behaves as an antagonist of RNase L as demonstrated by its ability to inhibit the antiviral properties of 5'-gamma-phosphorothioate (2'-5')(A)4 when both are microinjected in HeLa cells. The increased metabolic stability of 5'-gamma-phosphorothioate (2'-5')(A)4 as compared to that of (2'-5')(A)4 was first demonstrated in cell-free extracts and then confirmed in intact cells after introduction in the form of a conjugate to poly(L-lysine). Indeed, 5'-gamma-phosphorothioate (2'-5')(A)4-poly(L-lysine) conjugate induces protein synthesis inhibition and characteristic ribosomal RNA cleavages for longer times than unmodified (2'-5')(A)4-poly(L-lysine) in the same cell system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
B Bayard  C Bisbal  B Lebleu 《Biochemistry》1986,25(12):3730-3736
Molecular hybrids were synthesized by coupling (2'-5')(A)n oligoadenylates or 2-5A, an intracellular mediator involved in antiviral activity of interferons (IFNs), with poly(L-lysine) used as a membrane carrier. (2'-5')(A)n in its free form was not taken up by cells, probably because of its ionic character. Conjugation with the polypeptide carrier overcame this problem and enabled its pharmacological properties to be developed. The alpha-glycol group of individual (2'-5')(A)n oligomers was oxidized by periodate oxidation and conjugated by an amino reductive reaction to poly(L-lysine), Mr 14 000, in a molar ratio of 5:1. These hybrid molecules left the biologically active 5' end moiety of the (2'-5')(A)n molecule unchanged, and in particular its triphosphate group, and stabilized the molecule by increasing its resistance to phosphodiesterase hydrolysis. A dose-dependent inhibition of virus growth was observed on concomitant incubation of (2'-5')(A)n-poly(L-lysine) conjugates with vesicular stomatitis virus infected L1210 cell cultures. This was a result of the activation of the (2'-5')(A)n-dependent endoribonuclease (RNase L) by intracellularly delivered (2'-5')(A)n as in some IFN-treated virus-infected cells. Indeed, (2'-5')(A)n-poly(L-lysine) conjugates bind RNase L effectively as can be seen from their ability to compete with authentic (2'-5')(A)n in a cell-free radiobinding assay. Moreover, (2'-5')(A)n-poly(L-lysine) conjugates promote transient inhibition of protein synthesis and a characteristic cleavage pattern of ribosomal RNAs in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Hovanessian AG  Justesen J 《Biochimie》2007,89(6-7):779-788
The demonstration by Kerr and colleagues that double-stranded (ds) RNA inhibits drastically protein synthesis in cell-free systems prepared from interferon-treated cells, suggested the existence of an interferon-induced enzyme, which is dependent on dsRNA. Consequently, two distinct dsRNA-dependent enzymes were discovered: a serine/threonine protein kinase that nowadays is referred to as PKR and a 2'-5'oligoadenylate synthetase (2'-5'OAS) that polymerizes ATP to 2'-5'-linked oligomers of adenosine with the general formula pppA(2'p5'A)(n), n>or=1. The product is pppG2'p5'G when GTP is used as a substrate. Three distinct forms of 2'-5'OAS exist in human cells, small, medium, and large, which contain one, two, and three OAS units, respectively, and are encoded by distinct genes clustered on the 2'-5'OAS locus on human chromosome 12. OASL is an OAS like IFN-induced protein encoded by a gene located about 8 Mb telomeric from the 2'-5'OAS locus. OASL is composed of one OAS unit fused at its C-terminus with two ubiquitin-like repeats. The human OASL is devoid of the typical 2'-5'OAS catalytic activity. In addition to these structural differences between the various OAS proteins, the three forms of 2'-5'OAS are characterized by different subcellular locations and enzymatic parameters. These findings illustrate the apparent structural and functional complexity of the human 2'-5'OAS family, and suggest that these proteins may have distinct roles in the cell.  相似文献   

4.
D Orlic  E Kirk  F Quaini  S Babbott 《Blood cells》1984,10(2-3):193-210
The trimer and tetramer core forms of 2'-5' Adenylate (2-5A) were tested in vitro for their effect on mouse liver CFU-E. Both forms of 2-5A core partially inhibited the CFU-E response to erythropoietin when given as a single dose at time 0 hours. Approximately 25% fewer colonies were seen after 2-days growth following exposure of the CFU-E to 0.1 mM 2-5A core. A 0.01 mM concentration of exogenous 2-5A core was not inhibitory. Endogenous 2-5A synthetase activity was assayed in spleen cell lysates from mice made anemic by several injections of phenylhydrazine. This method of treatment stimulated erythropoiesis, and this was directly correlated with an increase in the rate of enzyme activity measured by lysate conversion of 14C-ATP to 2-5A (our in press data suggests that the same may occur with hypoxic stimulation). This suggested to us that endogenous 2-5A synthetase and its 2-5A, a known inhibitor of DNA synthesis and protein synthesis, may help to regulate some of the late events in erythropoiesis.  相似文献   

5.
The 40-kDa 2'-5'-oligoadenylate [(2'-5') (A)n] synthetase isoenzyme was proven to be a mediator of the inhibition of encephalomyocarditis virus (EMCV) replication by interferon (IFN). When activated by double-stranded RNA, this enzyme converts ATP into 2'-5'-oligoadenylate [(2'-5') (A)n], and (2'-5') (A)n was found to accumulate in IFN-treated, EMCV-infected cells. The only known function of (2'-5') (A)n is the activation of RNase L, a latent RNase, and this was also implicated in the inhibition of EMCV replication. Intermediates or side products in EMCV RNA replication, presumed to be partially double stranded, were shown to activate (2'-5') (A)n synthetase in vitro. These findings served as the basis of the long-standing hypothesis that the activator of (2'-5') (A)n synthetase in IFN-treated, EMCV-infected cells is the viral RNA. To test this hypothesis, we have generated a polyclonal rabbit antiserum to the human 40-kDa (2'-5') (A)n synthetase. The antiserum immunoprecipitated, from IFN-treated HeLa cells that had been infected with EMCV, the 40-kDa (2'-5') (A)n synthetase protein in complex with both strands of EMCV RNA. The immunoprecipitate was active in (2'-5') (A)n synthesis even without addition of double-stranded RNA, whereas the immunoprecipitate from IFN-treated, uninfected cells was not. These and other results demonstrate that in IFN-treated, EMCV-infected cells, viral RNA is bound to the (2'-5') (A)n synthetase and suggest that the agent activating the (2'-5') (A)n synthetase is the bound viral RNA.  相似文献   

6.
Metabolically stable phosphorothioate tetramer analogues of (2'-5')(A)n with Rp and/or Sp chirality in the 2'-5'-phosphodiester linkages constitute a new class of antiviral agents since they mimic the effects of interferons. Three of the diastereomeric 5'-monophosphates (i.e., pRpRpRp, pSpRpRp, and pRpSpSp) bind to and activate RNase L from extracts of HeLa cells. However, the pSpSpSp (2'-5')-(A)4-phosphorothioate is unique in that it binds to, but cannot activate, RNase L to cleave rRNA. When microinjected into the cytoplasm of HeLa cells followed by virus infection, the pRpRpRp, pSpRpRp, and pRpSpSp (2'-5')(A)4-phosphorothioates demonstrate antiviral activity, as does (2'-5')(A)4ox-red, an active (2'-5')(A)n analogue. When microinjected simultaneously with (2'-5')(A)nox-red, an active the pSpSpSp (2'-5')(A)4-phosphorothioate inhibits activation of RNase L in HeLa cells, thereby blocking direct protection of vesicular stomatitis virus. The agonist and antagonist properties of pRpRpRp and pSpSpSp, respectively, are transient probably as a consequence of the hydrolysis of the 5'-monophosphate and formation of the less active (2'-5')(A)4-phosphorothioate cores. The possible use of these (2'-5')(A)4-phosphorothioates as tools for dissecting the biological significance of the (2'-5')(A)n system or in antiviral chemotherapy is discussed.  相似文献   

7.
Metabolically stable analogues of (2'-5')oligo(adenylate), (2'-5')(A)n, might constitute a new class of antiviral agents as they mimic some of the effects of interferons. 2'-O-phosphoglyceryl derivatives of (2'-5')(A)n oligomers, (2'-5')(A)n-PGro have been synthesized by chemical modification of their terminal ribose residue. Such analogues are resistant to degradation by phosphodiesterases but remain sensitive to phosphatase activity, at least in cell-free extracts. In line with its increased stability, (2'-5')(A)n-PGro has a powerful antiviral activity against an RNA virus when microinjected with micropipettes into the cytoplasm of intact cells. This antiviral activity remains transient however, possibly as a consequence of degradation in intact cells. Since (2'-5')(A)n and its derivatives do not easily cross cell membranes, their possible use in antiviral chemotherapy is tightly linked with the development of vectors suitable for their administration in vivo.  相似文献   

8.
Evidence is available for a role of a (2'-5')(A)n-activated endoribonuclease (RNase L) in the antiviral activity of interferon for several RNA viruses. (2'-5')(A)n and their analogues might thus provide an interesting alternative to exogenous interferons or their inducers in antiviral chemotherapy. In addition, the evaluation of the activity of (2'-5)(A)n as mediators of interferon's biological activities or as cell growth regulators requires biochemical studies using agonists or antagonists of the system. Non-disruptive techniques for the introduction of (2'-5')(A)n and their analogues into cell lines or tissues are required for these studies since these highly charged compounds are cell impermeable. (2'-5')(A)n oligomers and analogues of increased stability towards phosphodiesterases were derived by chemical modification of their 2' end and encapsulated in protein-A-bearing liposomes. The specific delivery of liposome contents into L1210 mouse leukemic cells was achieved with the help of monoclonal antibodies directed against the appropriate class I major histocompatibility complex-encoded proteins expressed by these cells. This intracellular delivery led to transient inhibition of protein synthesis and an antiviral activity, both compatible with activation of RNase L. This activity was enhanced for the analogues designed to resist degradation, with respect to the natural product.  相似文献   

9.
OAS1 is the small form and OAS2 is the medium form of the human interferon-induced 2'-5' oligoadenylate synthetases. The p42 isoform of OAS1 and the p69 isoform of OAS2 have been expressed in insect cells and purified to give pure, highly active 2'-5' oligoadenylate synthetase. The catalysis of 2'-5' oligoadenylate synthesis is strictly dependent on double-stranded RNA and magnesium ions. We have examined the effect of a series of divalent metal ions: copper, iron and zinc ions strongly inhibited the enzymatic activity, cobalt and nickel ions were partly inhibitory whereas calcium and manganese ions were without effect. However, manganese ions can replace magnesium ions as activator. The inhibitory effect of zinc ions was characterised in detail. The inhibitory constants of Zn(2+) were estimated to be 0.10 mM for OAS1p42 and to 0.02 mM for OAS2p69. Cross-linking experiments showed that zinc ions can control the oligomerisation by enhancing the formation of tetrameric forms of OAS1p42  相似文献   

10.
2'-5' oligoadenylate (2-5 (A)) synthetases are major components of the antiviral pathways induced by interferons. In the presence of double-stranded RNA, they polymerize ATP to form 2-5 (A) oligomers that, in turn, activate the latent ribonuclease RNase L, causing mRNA degradation. These enzymes, unlike other nucleotidyl transferases, catalyze 2'-5', not 3'-5', phosphodiester bond formation between substrates bound to the acceptor and donor sites. Moreover, unlike other members of this extended family, the P69 isozyme of 2-5 (A) synthetase functions as a homodimer. Here, we report that the need for P69 dimerization is because of a crisscross enzyme reaction joining two substrate molecules bound to two opposite subunits. Consequently, although homodimers of mutants in the previously identified acceptor site, the donor site, or the catalytic site were inactive, selective heterodimers of the mutants were active because of subunit complementation. The catalytic site had to be present in the same subunit that contained the acceptor site, whereas the donor site had to be provided by the other subunit. These results allowed us to design a mutant protein that acted as a dominant-negative inhibitor of wt P69 but not of another isozyme of 2-5 (A) synthetase.  相似文献   

11.
2'-5'-Oligoadenylate (2-5(A)) synthetases are a family of interferon-induced enzymes that are activated by double-stranded RNA. To understand why, unlike other DNA and RNA polymerases, they catalyze 2'-5' instead of 3'-5' phosphodiester bond formation, we used molecular modeling to compare the structure of the catalytic domain of DNA polymerase beta (pol beta) to that of a region of the P69 isozyme of 2-5(A) synthetase. Although the primary sequence identity is low, like pol beta, P69 can assume an alphabetabetaalphabetabetabeta structure in this region. Moreover, mutation of the three Asp residues of P69, which correspond to the three catalytic site Asp residues of pol beta, inactivated the enzyme without affecting its substrate and activator binding capacity, providing further credence to the concept that this region is the catalytic domain of P69. This domain is highly conserved among all 2-5(A) synthetase isozymes. Biochemical and mutational studies demonstrated that dimerization of the P69 protein is required for its enzyme activity. However, a dimer containing a wild type subunit and an inactive catalytic domain mutant subunit was also active. The rate of catalysis of the heterodimer was half of that of the wild type homodimer, although the two proteins bound double-stranded RNA and ATP equally well.  相似文献   

12.
Using glycerol gradient centrifugation, the molecular sizes of porcine (2'-5')oligoadenylate synthetases (2-5A synthetases) were estimated. The 2-5A synthetase purified from pig spleen was about 150 kDa, while the enzyme extracted from nuclei of Newcastle disease virus-infected pig epithelial cells (SK-h) was about 20-40 kDa. The nuclear 2-5A synthetase was selectively adsorbed to Protein A-Sepharose beads conjugated with anti-spleen 2-5A synthetase antibody. Thus, the smaller 2-5A synthetase in nuclei of pig cells shares a protein structure with the larger enzyme from pig spleen.  相似文献   

13.
Presence of (2'-5')oligoadenylate synthetase in avian erythrocytes   总被引:1,自引:0,他引:1  
(2'-5')Oligoadenylate synthetase (2-5A synthetase) was found in avian erythrocyte lysates from chicken, goose, and pigeon, with high levels being observed in chicken erythrocytes. No activities, however, were detected in erythrocytes from human, sheep, mouse, turtle, frog, trout, or lamprey. In chicken erythrocyte lysate, about 70% of ATP was converted to 2-5A molecules during a 20-h incubation, in which the tri- and tetra-adenylate were the major products. The tri-, tetra-, penta-, and hepta-adenylate were synthesized sequentially, but the levels of the di-adenylate were low throughout the reaction. 2-5A synthetase was also seen in erythrocytes from specific pathogen-free chickens, suggesting that the enzyme was not produced as a result of microbial infections. 2-5A synthetases from avian erythrocytes of chicken and pigeon were found not only in cytoplasms, but also in nuclei. No enzyme activity, however, was detected in the nuclear fraction of goose erythrocytes. The molecular size of 2-5A synthetase in nuclei from chicken erythrocytes was 45,000-60,000 daltons, while cytoplasms contained an 85,000- to 120,000-dalton enzyme. In addition, the synthetase was present in several types of chicken tissue including liver, intestine, bone marrow, spleen, bursa, pancreas, and thymus, but not in brain, heart, or stomach.  相似文献   

14.
Treatment of rat pheochromocytoma cell line PC12 with Vipera lebetina (snake) nerve growth factor (NGF) induces a rapid increase (from 5 to 25-fold) in the level of (2'-5')oligo(A) synthetase activity and a simultaneous decrease (from 2 to 5-fold) in the activity of 2'-5' A degrading enzymes--2'-phosphodiesterases (2'-PDE). These changes in the enzyme activities led to the significant increase in the intracellular concentration of 2'-5' A. We have found that the serum starvation of PC12 cells causes a 1.5 to 2.0-fold increase in the level of 2'-5' A-synthetase activity, but the activities of 2'-PDE and the intracellular concentration of 2'-5' A remain unaltered. These results show that NGF modulates the activity of (2'-5')oligo(A) enzymes and intracellular concentration of 2'-5' A during the neural differentiation of PC12 cells.  相似文献   

15.
16.
In vertebrates cytokines mediate innate (natural) immunity and protect them against viral infections. The cytokine interferon causes the induction of the (2'-5')oligoadenylate synthetase [(2-5)A synthetase], whose product, (2'-5')oligoadenylate, activates the endoribonuclease L which in turn degrades (viral) RNA. Three isoforms of (2-5)A synthetases exist, form I (40-46 kDa), form II (69 kDa), and form III (100 kDa). Until now (2-5)A synthetases have only been cloned from birds and mammals. Here we describe the cloning of the first putative invertebrate (2-5)A synthetase from the marine sponge Geodia cydonium. The deduced amino acid sequence shows signatures characteristic for (2-5)A synthetases of form I. Phylogenetic analysis of the putative sponge (2-5)A synthetase indicates that it diverged first from a common ancestor of the hitherto known members of (vertebrate) (2-5)A synthetases I, (2-5)A synthetases II and III. Moreover, it is suggested that the (2-5)A synthetases II and III evolved from this common ancestor (very likely) by gene duplication. Together with earlier results on the existence of the (2'-5')oligoadenylates in G. cydonium, the data presented here demonstrate that also invertebrates, here sponges, are provided with the (2-5)A system. At present, it is assumed that this system might be involved in growth control, including control of apoptosis, and acquired its additional function in innate immune response in evolutionarily younger animals, in vertebrates.  相似文献   

17.
C Lee  R J Suhadolnik 《FEBS letters》1983,157(1):205-209
The introduction of the cordycepin analog of (2'-5')An, (2'-5')ppp(3'dAp)n3'dA [referred to as (2'-5')p33'dAn], into mouse L929 cells and cultured human fibroblasts resulted in a dose-dependent inhibition of protein synthesis which was comparable to the inhibition observed by (2'-5')ppp(Ap)nA [referred to as (2'-5')p3An]. The inhibition of protein synthesis by (2'-5')p33'dAn was much more persistent than that of the naturally occurring (2'-5')p3An following prolonged incubation of cells. Furthermore, the (2'-5')p3An was cytotoxic to mammalian cells in culture, whereas the (2'-5')p33'dAn was not.  相似文献   

18.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

19.
Oligo(2'-5')adenylate synthetase in human lymphoblastoid cells   总被引:1,自引:0,他引:1  
The enzyme oligo(2′–5′)adenylate synthetase, when activated by double-stranded RNA, polymerizes ATP into the novel oligonucleotide (2′–5′)ppp(Ap)nA. We describe conditions for assay of this enzyme in crude extracts of a human lymphoblastoid cell line, Namalwa. The production of (2′–5′)ppp(Ap)nA by Namalwa extracts was 3–5 times greater than the production by extracts of interferon pretreated mouse L cells, and 700 fold higher than the production by extracts of untreated mouse L cells. The relatively high level of oligo(2′–5′)adenylate synthetase in Namalwa cells was not attributable solely to their constitutive secretion of low levels of interferon. Analysis of the size distribution of the oligomers formed at different times suggested that the enzyme can add ATP to a free pppApA. Infection by Newcastle disease virus or treatment with interferon raised the apparent synthetase levels only marginally. Experiments that employed antibody to interferon suggested that the interferon must be externalized from the NDV-infected cell to induce maximal synthetase levels.  相似文献   

20.
J Imai  P F Torrence 《Biochemistry》1984,23(4):766-774
The oligonucleotides A5'pp5'A2'p5'A2'p5'A and A5'ppp5'A2'p5'A2'p5'A were prepared by reaction of AMP or ADP, respectively, with the 5'-(phosphoimidazolidate) of A2'p5'A2'p5'A. A5'pppp5'A2'(p5'A)n (n = 1-3) were synthesized by reaction of p5'A2'(p5'A)n (n = 1-3) with adenosine 5'-trimetaphosphate. All structures were confirmed by enzyme digestion and 1H and 31P nuclear magnetic resonance (NMR). The products A5'pppp5'A2'p5'A and A5'pppp5'A2'p5'A2'p5'A were found to be identical with two of the products of the 2-5A synthetase catalyzed reaction of Ap4A with ATP, thus confirming the structural assignments made by earlier investigators. In extracts of mouse L cells programmed with encephalomyocarditis virus RNA, A5'pppp5'A2'p5'A2'p5'A2'p5'A and A5'pppp5'A2'p5'A2'p5'A were equipotent with 2-5A itself as inhibitors of translation. The oligomers A5'ppp5'A2'p5'A2'p5'A and A2'pppp5'A2'p5'A were about 100 times less active than 2-5A, and A5'pp5'A2'p5'A2'p5'A was without translational inhibitory activity. When affinity for the 2-5A-dependent endonuclease was determined (by displacement of 2-5A[32P]pCp from endonuclease), all of the analogues, as well as 2-5A itself, had similar affinities for the endonuclease except for A5'pppp5'A2'p5'A, which was bound approximately 100 times less effectively. Under conditions of the radiobinding assay, A5'pppp5'A2'p5'A2'p5'A was degraded (t1/2 = 2 h) to ATP, ADP, AMP, ppp5'A2'p5'A2'p5'A, and p5'A2'p5'A2'p5'A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号