首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous recordings of the effect of red light on the over-all and zonal growth responses were made on intact, dark-grown wheat ( Triticum aestivum L., cv. Hatri) seedlings selected 70 or 90 h after sowing. The over-all growth response of intact coleoptiles induced by bilateral continuous red light (660 nm, 17 W m−2) was complex and resulted from the overlapping of different zonal growth responses. During a 5 h investigation period, these responses can be divided into two phases. The first phase (short-term response) was a transient growth inhibition. After a lag period of ca 15 min, the rate of extension decelerated to a minimum value at ca 60 min, after which an acceleration was seen. This response was qualitatively the same in all coleoptile zones investigated (tip, subapical zone, base) and independent of coleoptile age. The second phase (delayed response) became measurable between 1.8 and 3 h after onset of red light irradiation and exhibited zonal-specific growth promotion or inhibition, dependent on the coleoptile age. A persistent growth promotion was observed only in the tip region of coleoptiles selected 70 h after sowing and became detectable about 3 h after the onset of red light.  相似文献   

2.
Diffusible auxin levels were measured in coleoptiles and mesocotyls of dark-grown seedlings ofavena sativa (cv. Spear) andZea mays (cv. Golden Cross Bantam) using theAvena curvature bioassay. The coleoptile tip was confirmed as the major auxin source in etiolated seedlings. Auxin levels were found to decrease basipetally in sequent sections of theAvena coleoptile but not to decrease in apical sections of increasing length. An inhibitor capable of inducing positive curvatures ofAvena test coleoptiles was discovered in diffusates from the mesocotyls of oat and corn seedlings. The amount of this inhibitor was correlated with the cessation of mesocotyl growth of oat seedlings grown in darkness, and with the inhibition of mesocotyl growth of corn seedlings exposed to red light.  相似文献   

3.
When 3–4 mm long coleoptiles of etiolated rice seedlings (cv. Koshijiwase) were irradiated with continuous red light their growth was seriously inhibited. If a brief exposure of red light (4×103 ergs cm−2) was given to the short coleoptiles, the growth rate dropped immediately after the irradiation, but the growth did not stop till the coleoptile reached some calculated length. If another brief red irradaition of the same order was given 24 hr after the first, the growth rate and the final length dropped further. The effect of red light was reversed by successively given far-red light, and this response was repeatedly red and far-red reversible. The escape reaction was rather slow so that photoreversibility was not lost at all by 8th hr, and 50% of the initial reversibility was lost within ca. 16 hr at 25±0.5 C. Blue light also induced the inhibition of coleoptile elongation, the effect was reversed by subsequent far-red irradiation, and this could be obtained repeatedly. Thus, the photoinhibition of the young coleoptile can be concluded to be under the control of phytochrome, and the mode of action appeared quite different from the previously reported results with longer coleoptiles.  相似文献   

4.
Plant cell elongation depends on the physical properties of the primary cell wall. Because xyloglucan endotransglycosylases (XETs) are enzymes that mediate cleavage and rejoining of the beta(1-4)-XG backbone of primary cell wall, they are potentially involved in cell elongation. In this paper, the growth of the barley coleoptile was related to the expression patterns of two genes from this family (hvEXT, hvXEB) in experiments where coleoptile elongation varied according to light/dark treatments in order to assess the potential role of these genes in cell elongation. In dark-grown and light-grown coleoptiles, growth rate variations were associated with altered levels of expression of hvEXT and hvXEB: they were higher in dark-grown than in light-grown seedlings, and decreased after 5 d in darkness, and after 4 d in continuous light. In 4-d-old seedlings, coleoptile elongation decreased significantly 4 h after the onset of a continuous white- light irradiation, and hvXEB and hvEXT mRNA levels decreased, respectively, 2 h and 4 h after the onset of white-light irradiation. Moreover, the distribution of hvXEB and hvEXT along the coleoptiles of 4-d-old dark-grown seedlings were different. Altogether, these results suggest a complex pattern of temporal and positional expression for the different genes of the XET-related family.  相似文献   

5.
W. Bleiss 《Planta》1994,192(3):340-346
The length of parenchyma cells along the axis of dark-grown coleoptiles of Triticum aestivum L. and the pattern of competence for red-light-(R-) induced stimulation or inhibition of cell elongation in the course of coleoptile development were determined by microscopic measurements in a file of 240 cells from the tip to the base. On the basis of these measurements distinct zones (responding in different ways to R) were selected for studying the early time course of phytochrome-mediated growth-rate changes in intact coleoptiles by use of a sensitive transducer system. Between 2 d and 4 d after sowing dark-grown coleoptiles showed a graded incline in cell growth activity from the apex to the base (growth gradient). Whereas cell elongation in the coleoptile base ceased 4 d after sowing, cell elongation speeded up in the tip and middle region at that time. Those cells that grew slowly in darkness (tip and middle region between 2d and 3 d after sowing) were stimulated in growth by R-pulse irradiation (1 min R, 660 nm, 1000 J · m–2). In contrast, the growth of fast-growing cells (base between 2 d and 4 d after sowing, tip and middle region between 4 d and 5 d after sowing) was inhibited by R. However, the starting time for R-induced growth changes was different for different coleoptile zones. The respective data point to the storage of a phytochrome-mediated signal in the cells of the middle region, until these cells become competent to respond to it; alternatively, Pfr, the far-red-light-absorbing form of phytochrome, may be stored in a stable form. Continuous recordings on the effect of R, far-red (FR) and R/FR on the zonal growth responses were made on intact coleoptiles, selected 3 d after sowing. During a 5-h investigation period the R-induced changes in growth rate could be divided into two phases: (i) A transient growth inhibition which started approx. 15 min after R. This response was qualitatively the same in all coleoptile zones investigated (tip, middle region, base). (ii) Zonal-specific growth responses which became measurable approx. 2.5 h after R, i.e. growth promotion in the tip, growth inhibition in the base and an adaptation of growth rate to the dark control level in the middle region. The R-induced growth rate changes were reversible by FR for both phases. Additional growth experiments on excised coleoptile segments under R and auxin application indicated that the zonal-specific growth promotion or inhibition may be not mediated by an influence of R on the auxin level.Abbreviations FR far-red light - Pfr far-red-light-absorbing form of phytochrome - R red light The technical assistance of Mrs. B. Liebe is gratefully acknowledged.  相似文献   

6.
d -Glucan contents and (1→3),(1→4)-β-d-glucan hydrolase activity increased in the faster phase of coleoptile growth, then declined under both light and dark conditions. The relative glucan content in the cell wall showed a good correlation with the increment of coleoptile length. Strong correlations were also observed among the increment of coleoptile length, the decrease in the level of the glucans, and the relative activity of the glucanase in the cell wall of light- and dark-grown coleoptiles except for those values in the early stage of coleoptile growth, supporting a hypothesis that the turnover of the glucans is one of the important factors which regulate rice coleoptile growth. The levels of the glucans and the glucanase activity were always lower in the cell wall of coleoptiles grown in the light than those in darkness during the experimental period. These results suggest that light irradiation inhibits both the synthesis and the breakdown of the glucans, causing a decrease in the capacity of the cell wall to extend, thereby inducing growth suppression in rice coleoptiles. Received 24 September 1998/ Accepted in revised form 28 December 1998  相似文献   

7.
Phytochrome-mediated Electric Potential Changes in Oat Seedlings   总被引:2,自引:2,他引:0  
Brief exposures to red light induce far red-reversible changes of 5 to 10 millivolts magnitude in the upper 1 centimeter of etiolated Avena coleoptiles. The changes begin within 15 seconds of the start of illumination and they continue for at least 12 minutes. The changes were measured using a flowing solution of 10 mm KCl to contact the surface of the coleoptile. A dark-grown coleoptile shows no change in response to far red light unless it first receives red light treatment. The second of two red light exposures is ineffective without an intervening far red treatment. Some characterization of these electric responses to light is presented.  相似文献   

8.
Diffusible auxin levels were measured in coleoptiles and mesocotyls of dark-grown seedlings ofavena sativa (cv. Spear) andZea mays (cv. Golden Cross Bantam) using theAvena curvature bioassay. The coleoptile tip was confirmed as the major auxin source in etiolated seedlings. Auxin levels were found to decrease basipetally in sequent sections of theAvena coleoptile but not to decrease in apical sections of increasing length. An inhibitor capable of inducing positive curvatures ofAvena test coleoptiles was discovered in diffusates from the mesocotyls of oat and corn seedlings. The amount of this inhibitor was correlated with the cessation of mesocotyl growth of oat seedlings grown in darkness, and with the inhibition of mesocotyl growth of corn seedlings exposed to red light.  相似文献   

9.
In the parenchyma cells of 1-d-old dark-grown rye coleoptiles (Secale cereale) proplastids occurred which sometimes contained starch grains. During coleoptile growth in darkness starch-filled amyloplasts are formed from the preexisting proplastids. No prolamellar bodies were observed in the stroma of the plastids of the etiolated coleoptile. After irradiation of 3-d-old etiolated coleoptiles with continuous white light three different types of plastids occurred. In the epidermal cells proplastids were observed. The parenchyma cells below the stomata of the outer epidermis (above the two vascular bundles) contained mature, spindle-shaped chloroplasts with a well-developed thylakoid system. In the parenchyma cells that surround the vascular bundles amyloplasts with some thylakoid membranes (chloroamyloplasts) occurred. The mesophyll cells of the primary leaves of dark-grown seedlings contained etioplasts with large prolamellar bodies. In the primary leaves of irradiated plants chloroplasts similar to those of the parenchyma cells of the coleoptile were observed. Our results show that the rye coleoptile, which grows underground as a heterotrophic organ, is capable of developing mature chloroplasts upon reaching the light above the soil surface. The significance of this expression of photosynthetic capacity for the carbon economy of the developing seedling is discussed.  相似文献   

10.
Auxin responsiveness of a novel cytochrome p450 in rice coleoptiles   总被引:1,自引:0,他引:1       下载免费PDF全文
Chaban C  Waller F  Furuya M  Nick P 《Plant physiology》2003,133(4):2000-2009
  相似文献   

11.
Chloroplasts of guard cells and coleoptiles have been implicated in the sensory transduction of blue light. The present study was aimed at establishing whether the chloroplast of the hypocotyl from Arabidopsis, another blue light-responding organ, has similar characteristics to that of sensory-transducing guard cell and coleoptile chloroplasts. Results showed that the phototropic curvature and arch length induced by blue light in Arabidopsis seedlings matched the distribution of mature chloroplasts in the bending hypocotyl. The bending arch consistently included the region of the hypocotyl containing mature chloroplasts, and never extended beyond that region. Manipulation of the extent of greening of dark-grown hypocotyls by varying red light pretreatments elicited blue light-stimulated curvatures and arch lengths that depended on the duration of the red light pretreatment and on the distribution of mature chloroplasts in the hypocotyl. Albino psd2 mutants of Arabidopsis, which lack mature chloroplasts, are devoid of phototropic sensitivity under conditions in which wild-type seedlings show large curvatures. The star mutant of Arabidopsis has a delayed greening and a delayed phototropic response as compared with wild type. Measurements of photosynthetic oxygen evolution and carbon fixation, dark respiration, and light-dependent zeaxanthin formation in the hypocotyl showed features similar to those of guard cells and coleoptiles, and distinctly different from those of mesophyll tissue. These results indicate that the hypocotyl chloroplast has characteristics similar to those associated with guard cell and coleoptile chloroplasts, and that phototropic bending of Arabidopsis hypocotyls appears to require mature chloroplasts.  相似文献   

12.
The relationships between changes in irreversible and reversible organ length, turgor (P), osmotic pressure (pi), and metabolic activity of the cells were investigated in intact coleoptiles of rye seedlings ( Secale cereale L.) that were either grown in darkness or irradiated with continuous white light. Cessation of growth at day 4 after sowing was associated with an apparent mechanical stiffening of the cell walls. Turgor pressure was measured in epidermal and mesophyll cells with a miniaturized pressure probe. No gradient of turgor was found between the peripheral and internal cells. In juvenile (growing) coleoptiles, average turgor was 0.60 MPa and a negative water potential (P - pi) was established in these cells. Upon emergence of the primary leaf, turgor declined, but P was maintained at values of 0.43 and 0.52 MPa in 7-day-old light- and dark-grown coleoptiles, respectively. Water potential in non-growing cells approached zero. The rate of dark respiration and elongation growth were not correlated. Surgical removal of the mature coleoptile revealed that the erect position of the 7-day-old shoot was dependent on the presence of this sturdy, turgid organ sheath. It is concluded that, during the first week of seedling development, the pierced, metabolically active coleoptile fulfills an essential function as an elastic basal tube for the juvenile shoot.  相似文献   

13.
F. Waller  P. Nick 《Protoplasma》1997,200(3-4):154-162
Summary In seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.  相似文献   

14.
Nishimura T  Mori Y  Furukawa T  Kadota A  Koshiba T 《Planta》2006,224(6):1427-1435
When maize coleoptiles were unilaterally exposed to red light (7.9 μmol m−2s−1 for 5 min), 3 h after treatment IAA levels in coleoptiles decreased in all regions, from top to basal, with levels about 60% of dark controls. Localized irradiation in the 5 mm top zone was sufficient to cause the same extent of IAA reduction in the tips to that in the tips of whole irradiated shoots. When coleoptiles were treated with N-1-naphthylphthalamic acid (NPA), an accumulation of IAA in the tip and a decrease of diffusible IAA from tips were simultaneously detected. IAA accumulation in red-light treated coleoptiles by NPA was much lower than that of dark controls. NPA treatment did not affect the content of conjugated IAA in either dark or light treated coleoptile tips. When 13C11 15N2-tryptophan (Trp) was applied to the top of coleoptiles, substantial amounts of stable isotope were incorporated into free IAA in dark and red-light treated coleoptile tips. The ratio of incorporation was slightly lower in red-light treated coleoptile tips than that in dark controls. The label could not be detected in conjugated IAA. The rate of basipetal transport of IAA was about 10 mm h−1 and the velocity was not affected by red light. These results strongly suggest that red light does not affect the rates of conversion of free IAA to the conjugate form or of the basipetal transport, but just reduces the IAA level in the tips, probably inhibited by IAA biosynthesis from Trp in this region.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

15.
Excised apical segments of etiolated rice (Oryza sativa L.) coleoptiles produced ethylene. Increasing the number of cut sites per coleoptile increased the rate of ethylene formation. Ethylene produced by an etiolated-intact seedling in the dark was about a half of that by the excised coleoptile segment. Red light of low energy as well as of continuous irradiation inhibited the production of ethylene. The inhibition by a low energy dose of red light was partly relieved, if the red light was followed immediately by a small dose of far red light. The effect of red and far red light was repeatedly reversible, indicating that ethylene production was regulated by a phytochrome system. If the exposure to far red light was preceded by a period of darkness, this photoreversibility disappeared; 50% of the initial reversibility was lost within 5 hours. Applied ethylene (10 microliters per liter) significantly promoted the growth of intact coleoptiles of either totally etiolated or red light-treated seedlings, but had no effect on the excised apical segment of coleoptile.  相似文献   

16.
The far-red reversibility of the phytochrome-controlled stimulation of elongation of coleoptile sections by low fluence red light has been characterized in subapical coleoptile sections from dark-grown Avena sativa L., cv Lodi seedlings. The fluence dependence of the far-red reversal was the same whether or not the very low fluence response is also expressed. The capacity of far-red light to reverse the red light-induced response began to decline if the far-red light was given more than 90 minutes after the red irradiation. Escape was complete if the far red irradiation was given more than 240 minutes after the red irradiation. Sections consisting of both mesocotyl and coleoptile tissue from dark-grown Avena seedlings were found to have physiological regulation of the very low fluence response by indole 3-acetic acid and low external pH similar to that seen for sections consisting entirely of coleoptile tissue. The fluence-dependence of the red light-induced inhibition of mesocotyl elongation was studied in mesocotyl sections from dark grown Zea mays L. hybrid T-929 seedlings. Ten micromolar indole 3-acetic acid stimulates the control elongation of the sections, while at the same time increasing the sensitivity of the tissue for the light-induced inhibition of growth by a factor of 100.  相似文献   

17.
  • 1 In 4-day-old etiolated rice seedlings, 3 mm of the coleoptile tip did mainly perceive the photostimulus to cause the phytochrome-dependent inhibition of coleoptile elongation. At this age, cell elongation occurred most in the middle portion of coleoptiles in the dark, and was reversibly controlled by a brief exposure of the tip to red and far-red light. Thus, the photoperceptive site was evidently separated from the growing zone in intact rice coleoptiles.
  • 2 The red-light-induced inhibition of coleoptile elongation was nullified by the removal of tip followed by the exogenous application of IAA. The sensitivity of thus treated coleoptiles to IAA was gradually lost during intervening darkness between the irradiation and the decapitation, and a 50% loss was obtained at ca. 6th hour at 26°C.
  • 3 Polar auxin transport from coleoptile tips was remarkably prevented at the period between, at least, 2nd and 4th hour after red irradiation, and it recovered to the level of dark control by the 6th hour. Far-red light given immediately after red irradiation reversed the yield of diffusible auxin up to that of far-red control.
  相似文献   

18.
The fluence-response curve for first positive phototropic curvtureof dark-grown maize coleoptiles is shifted to ten-fold higherfluences if the coieoptiles are irradiated with red light 2h prior to the phototropic induction with blue light. Fluence-responsecurves for this red-induced shift were obtained with unilateralred irradiations 2 h prior to inductive blue pulses of differentfluences. They differ significantly depending on whether thered light was given from the same side as or the opposite sideto the respective inductive blue pulse, thus demonstrating thatthe red light effect is a local response of the coleoptile.The fluence-response curves for an inductive blue pulse in theascending part were compared with those for an inductive bluepulse in the descending part of the fluence-response curve forblue light induced phototropism. They are quite different inthreshold of red light sensitivity and shape for irradiationsfrom both the same and the opposite sides. This offers evidencefor the hypothesis that at least two different photosystemsare involved in phototropism, and that they are modulated differentlyby a red light preirradiation. All these fluence-response curvesindicate that it is possible to increase the response in thecoleoptile, if the red light preirradiation is given oppositeto the inductive blue pulse. This is supported by blue lightfluence-response curves obtained after a weak unilateral redpreirradiation. (Received September 11, 1986; Accepted October 18, 1986)  相似文献   

19.
The growth of rice seedlings (Oryza satira L.) in the presence of ethylene caused a change in the response to light of coleoptile elongation. In plants grown in air without added ethylene coleoptile elongation was promoted by red, far-red and yellow-green light only in very young seedlings; in older plants irradiation inhibited the growth of the coleoptile. The effect of growing plants in the presence of ethylene was to prolong the period during which light promoted coleoptile growth. Elongation of the first internode was inhibited by light whether or not the seedlings were grown in the presence of ethylene. A correlation existed between the growth effect of an irradiation and the initial decay rate of phytochrome which was established by the treatment. Regardless of wave length, light sources whose intensities were adjusted to produce a decay rate of about 10% per hour or less induced a moderate rate of coleoptile elongation which persisted for a relatively long period. Irradiation with red or yellow-green light of higher intensity which produced a higher rate of phytochrome decay induced a higher rate of coleoptile elongation, but growth stopped after several hours. Other observations, however, showed that one cannot establish a general simple correlation between the rate of elongation of rice coleoptiles under light and the status of measurable phytochrome in the plant.  相似文献   

20.
The elongation phase of growth of plant parts, as 1-cm segments excised from wheat coleoptiles here, is very simply recorded photometrically. One or more aligned segments submerged in aerated buffer pushed an Al foil shutter over a slit of light incident on a photodetector such as a solar or photronic cell, connected directly to a recorder, or a photomultiplier tube in a commercial photometer. Convenient kinetic records were obtained at 5 mm per min chart speed when one segment was combined with a 1-mm long slit, or more segments and longer slits, for which a 1-mm chart unit usually exceeded noise and was equivalent to 4 mum growth per cm coleoptile. In the presence of 10 cm of coleoptile segments no replenishment of solution was necessary during kinetic measurements of response in a 50-ml reservoir of IAA more concentrated than 30 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号