首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides (EPS), which are assumed to play an important role in the hydrocarbon tolerance of R. erythropolis PR4. The strain produced an acidic EPS, mucoidan, together with a fatty acid-containing EPS, PR4 FACEPS. The chemical structure of the mucoidan was determined using (1)H and (13)C NMR spectroscopy and by conducting 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The mucoidan was shown to consist of a pentasaccharide repeating unit with the following structure: [structure: see text].  相似文献   

2.
This paper describes the structure of neutral exopolysaccharide (EPS) produced by Lactobacillus johnsonii 142, strain of the lactic acid bacteria isolated from the intestine of mice with experimentally induced inflammatory bowel disease (IBD). Sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, NOESY, and 1H,13C HSQC experiments revealed that the repeating unit of the EPS is a pentasaccharide:→3)-α-d-Galp-(1→3)-β-d-Glcp-(1→5)-β-d-Galf-(1→3)-α-d-Galp-(1→3)-α-d-Galp-(1→The rabbit antiserum raised against whole cells of L. johnsonii 142 reacted with homologous EPS, and cross-reacted with exopolysaccharide from Lactobacillus animalis/murinus 148 isolated also from mice with IBD, but not reacted with EPS of L. johnsonii 151 from healthy mice.  相似文献   

3.
A possibility has been suggested of applying the EPS produced by Rhodococcus rhodochrous strain S-2 (S-2 EPS) to the bioremediation of oil-contaminated environments, because its addition, together with minerals, to oil-contaminated seawater resulted in emulsification of the oil, increased the degradation of polyaromatic hydrocarbons (PAH) of the oil, and led to the dominance of PAH-degrading marine bacteria. To understand the underlying principles of these phenomena, we determined the chemical structure of the sugar chain of S-2 EPS. The EPS was found to be composed of D-galactose, D-mannose, D-glucose, and D-glucuronic acid, in a molar ratio of 1:1:1:1. In addition, 0.8% (w/w) of octadecanoic acid and 2.7% (w/w) of hexadecanoic acid were also contained in its structure. By 1H and 13C NMR spectroscopy, including 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments, as well as chemical and enzymatic analyses, the polysaccharide was shown to consist of tetrasaccharide repeating units with the following structure: (see formula in text).  相似文献   

4.
The strain Lactobacillus pentosus LPS26 produces a capsular polymer composed of a high- (2.0 × 106 Da) (EPS A) and a low-molecular mass (2.4 × 104 Da) (EPS B) polysaccharide when grown on semi-defined medium containing glucose as the carbon source. The structure of EPS A and its deacetylated form has been determined by monosaccharide and methylation analysis as well as by 1D/2D NMR studies (1H and 13C). We conclude that EPS A is a charged heteropolymer, with a composition of d-glucose, d-glucuronic acid and l-rhamnose in a molar ratio 1:2:2. The repeating unit is a pentasaccharide with two O-acetyl groups at O-4 of the 3-substituted α-d-glucuronic acid and at O-2 of the 3-substituted β-l-rhamnose, respectively.→4)-α-d-Glcp-(1→3)-α-d-GlcpA4Ac-(1→3)-α-l-Rhap-(1→4)-α-d-GlcpA-(1→3)-β-l-Rhap2Ac-(1→This unbranched structure is not common in EPSs produced by Lactobacilli. Moreover, the presence of acetyl groups in the structure is an unusual feature which has only been reported in L. sake 0-1 [Robijn et al. Carbohydr. Res., 1995, 276, 117-136].  相似文献   

5.
Rhodococcus sp. 33 can tolerate and efficiently degrade various concentrations of benzene, one of the most toxic and prevailing environmental pollutants. This strain produces a large quantity of extracellular polysaccharide (33 EPS), which plays an important role in the benzene tolerance in Rhodococcus sp. 33, especially by helping the cells to survive an initial challenge with benzene. This EPS has been reported to be composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1. To understand the protective effect of 33 EPS, we determined its chemical structure by using 1H and 13C NMR spectroscopy including 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The polysaccharide was shown to consist of tetrasaccharide repeating units with the following structure: [structure: see text].  相似文献   

6.
Fan J  Zhang J  Tang Q  Liu Y  Zhang A  Pan Y 《Carbohydrate research》2006,341(9):1130-1134
A water-soluble fucogalactan (CMP3), with a molecular mass of 1.03 x 10(4) Da as determined by high-performance size-exclusion chromatography (HPSEC), was obtained from the crude intracellular polysaccharide of Coprinus comatus mycelium. Its chemical structure was characterized by sugar and methylation analysis along with 1H and 13C NMR spectroscopy, including NOESY and HMBC experiments for linkage and sequence analysis. The polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure:see text].  相似文献   

7.
Streptococcus thermophilus Sfi6 produces an exopolysaccharide (EPS) composed of glucose, galactose and N-acetylgalactosamine in the molar ratio of 1:2:1. The genes responsible for the EPS biosynthesis have been isolated previously and found to be clustered in a 14.5 kb region encoding 13 genes. Transfer of this gene cluster into a non-EPS-producing heterologous host, Lactococcus lactis MG1363, yielded an EPS with a similar high molecular weight, but a different structure from the EPS from the native host. The structure of the recombinant EPS was determined by means of 1H homonuclear and 1H-13C heteronuclear two-dimensional nuclear magnetic resonance (NMR) spectra and was found to be --> 3)-beta-D-Glcp-(1 --> 3)-alpha-D-Galp-(1 --> 3)-beta-D-Galp-(1 --> as opposed to --> 3)[alpha-D-Galp-(1 --> 6)]-beta-D-Glcp-(1 --> 3)-alpha-D-GalpNAc-(1 --> 3)-beta-D-Galp-(1 --> for the wild-type S. thermophilus Sfi6. Furthermore, L. lactis MG1363 (pFS101) was also lacking a UDP-N-acetylglucosamine C4-epimerase activity, which would provide UDP-GalNAc for a GalNAc incorporation into the EPS and probably caused the substitution of GalNAc by Gal in the recombinant EPS. This modification implies that (i) bacterial glycosyltransferases could potentially have multiple specificities for the donor and the acceptor sugar molecule; and (ii) the repeating unit polymerase can recognize and polymerize a repeating unit that differs in the backbone as well as in the side-chain from its native substrate.  相似文献   

8.
Coccolith, a calcified scale with species-specific fine structure produced by marine unicellular coccolithophorid algae, consists of calcium carbonate (CaCO(3)) crystals and a small amount of organic matrices. A novel polysaccharide named coccolith matrix acidic polysaccharide (CMAP) was isolated from the coccolith of a coccolithophorid alga, Pleurochrysis haptonemofera. The structure of CMAP was determined by chemical analysis and NMR spectroscopy including COSY, TOCSY, HMQC, and HMBC to be a polysaccharide composed of the following unit: -->4) l-iduronic acid (alpha1-->2) meso-tartaric acid (3-->1) glyoxylic acid (1-->. It has four carboxyl groups per a disaccharide unit as observed in another polysaccharide PS-2 characterized previously in Pleurochrysis carterae. CMAP showed a strong inhibitory activity on CaCO(3) precipitation. These results suggest that CMAP serves as a regulator in the calcification of the coccolith.  相似文献   

9.
AIMS: To study the influence of medium constituents on growth, and exopolysaccharide (EPS) production by a strain of Oenococcus oeni. The structure of one of the EPSs has also been characterized. METHODS AND RESULTS: EPS concentration was estimated by the phenol/sulfuric acid method. After purification and fractionation of crude EPSs, the sugar composition was determined by GLC-MS of the TMS methyl glycosides. The major polysaccharide is 2-substituted-(1-3)-beta-D-glucan. This structure was determined by methylation analysis and conventional (1)H- and (13)C-nuclear magnetic resonance spectroscopy. In addition, O. oeni synthesized two heteropolysaccharides, although a lesser proportion, constituted by galactose and glucose, and one of them also showed rhamnose. The sugar source has a clear influence on growth and EPS synthesis, and EPS production was not enhanced by adding ethanol or increasing the nitrogen source. EPS biosynthesis starts in the exponential growth phase, and continued during the stationary growth phase. CONCLUSIONS: Higher EPS yields were obtained on cultures grown on glucose + fructose. O. oeni produces a beta-glucan, as the predominant EPS, and it is also able to produce two heteropolysaccharides. Significance and Impact of the Study: This work provides a better understanding of EPS synthesis by O. oeni and shows the first EPS structure described for this species.  相似文献   

10.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

11.
The neutral exopolysaccharide EPS35-5 (reuteran) produced from sucrose by the glucansucrase GTFA enzyme from Lactobacillus reuteri 35-5 was found to be a (1-->4,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis and 1D/2D 1H and 13C NMR spectroscopy of intact EPS35-5, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis and enzymatic hydrolysis, using pullulanase M1 (Klebsiella planticola), of EPS35-5, a composite model, that includes all identified structural elements, was formulated as follows: [Formula: see text].  相似文献   

12.

Background

The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens.

Results

Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses.

Conclusions

This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0347-2) contains supplementary material, which is available to authorized users.  相似文献   

13.
The neutral exopolysaccharide EPS180 produced from sucrose by the glucansucrase GTF180 enzyme from Lactobacillus reuteri 180 was found to be a (1-->3,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis, periodate oxidation, and 1D/2D 1H and 13C NMR spectroscopy of the intact EPS180, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis of EPS180, a composite model, that includes all identified structural features, was formulated as follows: [Formula: see text].  相似文献   

14.
The structure of the extracellular polysaccharide (EPS) from Lactobacillus rhamnosus strain GG has been investigated. In combination with component analysis, NMR spectroscopy shows that the polysaccharide is composed of hexasaccharide repeating units. Sequential information was obtained by two-dimensional (1)H,(1)H-NOESY, and (1)H,(13)C-HMBC NMR techniques. The structure of the repeating unit of the EPS from Lactobacillus rhamnosus strain GG was determined as: [carbohydrate structure: see text]  相似文献   

15.
The structure of the capsular polysaccharide from Streptococcus pneumoniae Type 33F was originally determined by a combination of chemical methods and limited use of NMR spectroscopy [Can. J. Biochem. Cell Biol.1984, 62, 666-677]. We report full 1H and 13C assignments and confirm the structure of the saccharide repeat unit, but find that the site of O-acetylation is O-2 of the -->5)-beta-D-Galf, rather than the -->3)-beta-D-Galf residue. We find that a slightly higher percentage of the repeat units are O-acetylated: [carbohydrate: see text].  相似文献   

16.
The aim of this strategy was to investigate whether the adjuvant activity of epimedium polysaccharide (EPS) could be further enhanced after encapsulated with liposome. In preparation of EPS liposome (EPSL) test, an orthogonal L9 (34) test design was used to optimize the preparation condition of EPSL. In adjuvant activity test, 350 14-day-old chickens were randomly assigned to 7 groups and vaccinated with Newcastle disease (ND) vaccine. Simultaneously, the chickens in experimental groups were injected with EPSL at three doses, EPS and blank liposome, respectively. The activity of lymphocytes proliferation, titer of serum antibody and concentrations of cytokines were determined. Results showed that the optimal preparation condition of EPSL was that ratio of drug to lipid, ratio of soybean phospholipid to cholesterol, ultrasonic time, and water bath temperature were 1:30, 4:1, 10 min and 40 °C, respectively. EPSL could significantly enhance the immune response of ND vaccine and promote cytokines secretion, and its high dose possessed the best efficacy. These findings indicated that liposome encapsulation could significantly improve the adjuvant activity of EPS.  相似文献   

17.
A thermophilic strain isolated from sea sand at Maronti, near Sant' Angelo (Ischia), is described. The organism grows well at an optimal temperature of 60 °C at pH 7.0. The thermophilic bacterium, named strain 4004, produces an exocellular polysaccharide (EPS) in yields of 90 mg/l. The EPS fraction was produced with all substrates tested, although a higher yield was obtained with sucrose or trehalose as sole carbon source. During growth, the EPS content was proportional to the biomass. Three fractions (EPS1, EPS2, EPS3) were obtained after purification. Quantitative monosaccharide analysis of the EPSs revealed the presence of mannose:glucose:galactose in a relative ratio of 0.5:1.0:0.3 in EPS1, mannose:glucose:galactose in a relative ratio of 1.0:0.3:trace in EPS2, and galactose:mannose:glucosamine:arabinose in a relative ratio of 1.0:0.8:0.4:0.2 in EPS3. The average molecular mass of EPS3 was determined to be 1×106 Da. From comparison of the chemical shift values in 1H and 13C spectra, we conclude that EPS3 presents a pentasaccharide repeating unit. Electronic Publication  相似文献   

18.
AIMS: To investigate the structural features and hypoglycaemic activity of an exopolysaccharide (EPS) produced by Sorangium cellulosum NUST06. METHODS AND RESULTS: The chemical structure of the EPS from S. cellulosum NUST06 was determined by gas-liquid chromatography, gas chromatography (GC), GC-mass spectrometry and nuclear magnetic resonance. The EPS was composed of a beta-D-(1-->4)-glucose backbone with alpha-D-(1-->6)-mannose side chains. The molecular weight of the EPS was approx. 2x10(5) Da. Healthy and alloxan-induced diabetic mice were used in the study. Blood glucose levels of the experimental animals during the trial period were analysed by a glucose test kit based on the glucose oxidase method. When 100 and 200 mg kg(-1) day(-1) of purified EPS was orally administered for 7 days, the serum glucose in alloxan-induced diabetic mice was reduced by 35.9 and 41.4% (P<0.01), and the serum glucose in healthy mice was reduced by 27.3 and 30.1% (P<0.05), respectively. CONCLUSIONS: The EPS produced by S. cellulosum NUST06 decreased blood glucose levels distinctly in both healthy and alloxan-induced diabetic mice. SIGNIFICANCE AND IMPACT OF THE STUDY: To elucidated the chemical structure of the EPS from S. cellulosum NUST06 and exploited the anti-diabetic potential of the EPS.  相似文献   

19.
An extracellular polysaccharide (EPS) was recovered and purified from the culture fluid of a sheathed bacterium, Sphaerotilus natans. Glucose, rhamnose, and aldobiouronic acid were detected in the acid hydrolysate of EPS by thin-layer chromatography (TLC). The aldobiouronic acid was found to be composed of glucuronic acid and rhamnose by TLC and gas-liquid chromatography analyses of the corresponding neutral disaccharide. The structure of EPS was identified by methylation linkage analysis and nuclear magnetic resonance. Additionally, partial acid hydrolysates of EPS were prepared and put through fast atom bombardment-mass spectrometry to determine the sugar sequence of EPS. The resulting data showed that EPS produced by S. natans is a new gellan-like polysaccharide constructed from a tetrasaccharide repeating unit, as shown below. -->4)-alpha-D-Glcp-(1-->2)-beta-D-GlcA p-(1-->2)-alpha-L-Rha p-(1-->3)-beta-L-Rha p-(1-->.  相似文献   

20.
Ozturk Urek  Raziye  Ilgin  Seda 《Annals of microbiology》2019,69(11):1201-1210
Microbial exopolysaccharides (EPSs) are very important because they are used in biotechnological applications in different industrial areas. The aim of the study was to determine the best EPS producer Pleurotus sp., to optimize EPS production and to perform partial purification and characterization of the produced EPS. After the production conditions were optimized, the EPS was isolated and partially purified. EPS was characterized by HP-TLC, 1H-NMR, FT-IR, and TGA. Hydroxyl, superoxide, and DPPH radical scavenging activities of the EPS were also investigated spectrophotometrically. The best EPS producer and its incubation period in submerged fermentation were determined as Pleurotus sajor caju and on 5 days, respectively. Culture conditions to increase EPS production were optimized as follows (in per liter): 90 g of glucose, 10 g of yeast extract, 10 g of peptone, and 100 mM of Mg2+. The optimal initial pH, temperature, and an agitation rate of culture were determined as 5.0, 25 °C, and 150 rate min−1, respectively. The highest EPS production was determined as 33.32 ± 1.6 g L−1. After isolation of EPS, one active fraction was obtained by gel filtration chromatography. EPS is composed mainly of glucose according to HP-TLC analysis. To the results, EPS had a complex structure by having carbohydrate and protein contents. The produced EPS had high degradation temperature as well as high antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号