首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151αF and Q50βN, showed two- to threefold-increased catalytic efficiency (kcat/Km) compared to wild-type CA130. Their Km values were decreased by ca. 50%, and the kcat values increased to 14.4 and 16.9 s−1, respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121βA and K198βA had a 30 to 58% longer half-life than wild-type CA130, and K198βA and D286βA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50βN/K198βA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.  相似文献   

2.
A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.  相似文献   

3.
Several screening methods were developed for the selection of Pseudomonas strains capable of hydrolyzing glutaryl-7-aminocephalosporanic acid to 7-aminocephalosporanic acid. An isolate exhibiting high acylase activity, designated BL072, was identified as a strain of Pseudomonas diminuta. It grew optimally at pH 7 to 8 and at a temperature of 32 to 40°C, but acylase activity was highest when the strain was grown at 28°C. Mutants of BL072 were generated by nitrosoguanidine treatment and screened for increased production of glutaryl-7-aminocephalosporanic acid acylase. A superior mutant gave a fourfold increase in acylase titer. The cell-associated acylase had similar activities against various glutaryl-cephems but had undetectable activity against cephalosporin C. This acylase may prove useful for the conversion of cephalosporin C to 7-aminocephalosporanic acid.  相似文献   

4.
Il1rn−/− mice spontaneously develop arthritis and aortitis by an autoimmune mechanism and also develop dermatitis by an autoinflammatory mechanism. Here, we show that Rag2−/−Il1rn−/− mice develop spontaneous colitis with high mortality, making a contrast to the suppression of arthritis in these mice. Enhanced IL-17A expression in group 3 innate lymphoid cells (ILC3s) was observed in the colon of Rag2−/−Il1rn−/− mice. IL-17A-deficiency prolonged the survival of Rag2−/−Il1rn−/− mice, suggesting a pathogenic role of this cytokine in the development of intestinal inflammation. Although IL-17A-producing T cells were increased in Il1rn−/− mice, these mice did not develop colitis, because CD4+Foxp3+ regulatory T cell population was also expanded. Thus, excess IL-1 signaling and IL-1-induced IL-17A from ILC3s cause colitis in Rag2−/−Il1rn−/− mice in which Treg cells are absent. These observations suggest that the balance between IL-17A-producing cells and Treg cells is important to keep the immune homeostasis of the colon.  相似文献   

5.
6.

Objective

Intravenous adenosine induces temporary bradycardia. This is due to the activation of extracellular adenosine receptors (ARs). While adenosine can signal through any of four ARs (A1AR, A2AAR, A2BAR, A3AR), previous ex vivo studies implicated the A1AR in the heart-rate slowing effects. Here, we used comparative genetic in vivo studies to address the contribution of individual ARs to the heart-rate slowing effects of intravascular adenosine.

Methods and Results

We studied gene-targeted mice for individual ARs to define their in vivo contribution to the heart-rate slowing effects of adenosine. Anesthetized mice were treated with a bolus of intravascular adenosine, followed by measurements of heart-rate and blood pressure via a carotid artery catheter. These studies demonstrated dose-dependent slowing of the heart rate with adenosine treatment in wild-type, A2AAR−/−, A2BAR−/−, or A3AR−/− mice. In contrast, adenosine-dependent slowing of the heart-rate was completely abolished in A1AR−/− mice. Moreover, pre-treatment with a specific A1AR antagonist (DPCPX) attenuated the heart-rate slowing effects of adenosine in wild-type, A2AAR−/−, or A2BAR−/− mice, but did not alter hemodynamic responses of A1AR−/− mice.

Conclusions

The present studies combine pharmacological and genetic in vivo evidence for a selective role of the A1AR in slowing the heart rate during adenosine bolus injection.  相似文献   

7.
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing.  相似文献   

8.
We used a gene knockout approach to elucidate the specific roles played by the Jun-N-terminal kinase (JNK) and NF-κB pathways downstream of TNF-α in the context of α(2) type I collagen gene (COL1A2) expression. In JNK1−/−-JNK2−/− (JNK−/−) fibroblasts, TNF-α inhibited basal COL1A2 expression but had no effect on TGF-β-driven gene transactivation unless jnk1 was introduced ectopically. Conversely, in NF-κB essential modulator−/− (NEMO−/−) fibroblasts, lack of NF-κB activation did not influence the antagonism exerted by TNF-α against TGF-β but prevented repression of basal COL1A2 gene expression. Similar regulatory mechanisms take place in dermal fibroblasts, as evidenced using transfected dominant-negative forms of MKK4 and IKK-α, critical kinases upstream of the JNK and NF-κB pathways, respectively. These results represent the first demonstration of an alternate usage of distinct signaling pathways by TNF-α to inhibit the expression of a given gene, COL1A2, depending on its activation state.  相似文献   

9.
Clec1A, a member of C-type lectin receptor family, has a carbohydrate recognition domain in its extracellular region, but no known signaling motif in the cytoplasmic domain. Clec1a is highly expressed in endothelial cells and weakly in dendritic cells. Although this molecule was reported to play an important role in the host defense against Aspergillus fumigatus by recognizing 1,8-dihydroxynaphthalene-melanin on the fungal surface, the roles of this molecule in un-infected animals remain to be elucidated. In this study, we found that Clec1a−/− mice develop milder symptoms upon induction of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. The maximum disease score was significantly lower, and demyelination and inflammation of the spinal cord were much milder in Clec1a−/− mice compared to wild-type mice. No abnormality was detected in the immune cell composition in the draining lymph nodes and spleen on day 10 and 16 after EAE induction. Recall memory T cell proliferation after restimulation with myelin oligodendrocyte glycoprotein peptide (MOG35–55) in vitro was decreased in Clec1a−/− mice, and antigen presenting ability of Clec1a−/− dendritic cells was impaired. Interestingly, RNA-Seq and RT-qPCR analyses clearly showed that the expression of inflammatory cytokines including Il17a, Il6 and Il1b was greatly decreased in Clec1a−/− mice after induction of EAE, suggesting that this reduced cytokine production is responsible for the amelioration of EAE in Clec1a−/− mice. These observations suggest a novel function of Clec1A in the immune system.  相似文献   

10.
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.  相似文献   

11.
A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint−/−) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1−/− mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1−/− mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1−/− mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1−/− mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.  相似文献   

12.
We used an H2-purging culture vessel to replace an H2-consuming syntrophic partner, allowing the growth of pure cultures of Syntrophothermus lipocalidus on butyrate and Aminobacterium colombiense on alanine. By decoupling the syntrophic association, it was possible to manipulate and monitor the single organism's growth environment and determine the change in Gibbs free energy yield (ΔG) in response to changes in the concentrations of reactants and products, the purging rate, and the temperature. In each of these situations, H2 production changed such that ΔG remained nearly constant for each organism (−11.1 ± 1.4 kJ mol butyrate−1 for S. lipocalidus and −58.2 ± 1.0 kJ mol alanine−1 for A. colombiense). The cellular maintenance energy, determined from the ΔG value and the hydrogen production rate at the point where the cell number was constant, was 4.6 × 10−13 kJ cell−1 day−1 for S. lipocalidus at 55°C and 6.2 × 10−13 kJ cell−1 day−1 for A. colombiense at 37°C. S. lipocalidus, in particular, seems adapted to thrive under conditions of low energy availability.  相似文献   

13.
The glutaryl-7-aminocephalosporanic acid (GL-7-ACA) acylase of Pseudomonas sp. strain GK16 is an (αβ)2 heterotetramer of two nonidentical subunits. These subunits are derived from nascent polypeptides that are cleaved proteolytically between Gly198 and Ser199 after the nascent polypeptides have been translocated into the periplasm. The activation mechanism of the GL-7-ACA acylase has been analyzed by both in vivo and in vitro expression studies, site-directed mutagenesis, in vitro renaturation of inactive enzyme precursors, and enzyme reconstitution. An active enzyme complex was found in the cytoplasm when its translocation into the periplasm was suppressed. In addition, the in vitro-expressed GL-7-ACA acylase was processed into α and β subunits, and the inactive enzyme aggregate of the precursor was also processed and became active during the renaturation step. Mutation of Ser199 to Cys199 and enzyme reconstitution allowed us to identify the secondary processing site that resides in the α subunit and to show that Ser199 of the β subunit is essential for these two sequential processing steps. Mass spectrometry clearly indicated that the secondary processing occurs at Gly189-Asp190. All of the data suggest that the enzyme is activated through a two-step autocatalytic process upon folding: the first step is an intramolecular cleavage of the precursor between Gly198 and Ser199 for generation of the α subunit, containing the spacer peptide, and the β subunit; the second is an intermolecular event, which is catalyzed by the N-terminal Ser (Ser199) of the β subunit and results in a further cleavage and the removal of the spacer peptide (Asp190 to Gly198).  相似文献   

14.
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed in the liver and secreted as biliary glycoprotein 1 (BGP1) via bile canaliculi (BCs). CEACAM1-LF is a 72 amino acid cytoplasmic domain mRNA splice isoform with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Ceacam1−/− or Ser503Ala transgenic mice have been shown to develop insulin resistance and nonalcoholic fatty liver disease; however, the role of the human equivalent residue, Ser508, in lipid dysregulation is unknown. Human HepG2 hepatocytes that express CEACAM1 and form BC in vitro were compared with CEACAM1−/− cells and CEACAM1−/− cells expressing Ser508Ala null or Ser508Asp phosphorylation mimic mutations or to phosphorylation null mutations in the tyrosine ITIMs known to be phosphorylated by the tyrosine kinase Src. CEACAM1−/− cells and the Ser508Asp and Tyr520Phe mutants strongly retained lipids, while Ser508Ala and Tyr493Phe mutants had low lipid levels compared with wild-type cells, indicating that the ITIM mutants phenocopied the Ser508 mutants. We found that the fatty acid transporter CD36 was upregulated in the S508A mutant, coexpressed in BCs with CEACAM1, co-IPed with CEACAM1 and Src, and when downregulated via RNAi, an increase in lipid droplet content was observed. Nuclear translocation of CD36 associated kinase LKB1 was increased sevenfold in the S508A mutant versus CEACAM1−/− cells and correlated with increased activation of CD36-associated kinase AMPK in CEACAM1−/− cells. Thus, while CEACAM1−/− HepG2 cells upregulate lipid storage similar to Ceacam1−/− in murine liver, the null mutation Ser508Ala led to decreased lipid storage, emphasizing evolutionary changes between the CEACAM1 genes in mouse and humans.  相似文献   

15.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

16.
Mismatch repair of AID-generated dU:G mispairs is critical for class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The generation of a previously unavailable Msh2−/−Msh6−/− mouse has for the first time allowed us to examine the impact of the complete loss of MutSα on lymphomagenesis, CSR and SHM. The onset of T cell lymphomas and the survival of Msh2−/−Msh6−/− and Msh2−/−Msh6−/−Msh3−/− mice are indistinguishable from Msh2−/− mice, suggesting that MSH2 plays the critical role in protecting T cells from malignant transformation, presumably because it is essential for the formation of stable MutSα heterodimers that maintain genomic stability. The similar defects on switching in Msh2−/−, Msh2−/−Msh6−/− and Msh2−/−Msh6−/−Msh3−/− mice confirm that MutSα but not MutSβ plays an important role in CSR. Analysis of SHM in Msh2−/−Msh6−/− mice not only confirmed the error-prone role of MutSα in the generation of strand biased mutations at A:T bases, but also revealed an error-free role of MutSα when repairing some of the dU:G mispairs generated by AID on both DNA strands. We propose a model for the role of MutSα at the immunoglobulin locus where the local balance of error-free and error-prone repair has an impact in the spectrum of mutations introduced during Phase 2 of SHM.  相似文献   

17.
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia)-related formin mDia1, encoded by DIAPH1 (5q31.3). mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1 −/− RhoB −/− mice are fertile and develop normally. Relative to age-matched Drf1 −/− RhoB +/− mice, the age of myelodysplasia onset was earlier in Drf1 −/− RhoB −/− animals—including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1 −/− RhoB −/− mice relative to Drf1 −/− RhoB +/− mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.  相似文献   

18.
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1 −/− MT −/− ZnT4 −/− cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1 −/− MT −/− ZnT4 −/− cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1 −/− MT −/− ZnT4 −/− cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.  相似文献   

19.
Niemann-Pick type C1 (NPC1) promotes the transport of LDL receptor (LDL-R)-derived cholesterol from late endosomes/lysosomes to other cellular compartments. NPC1-deficient cells showed impaired regulation of liver_X receptor (LXR) and sterol regulatory element-binding protein (SREBP) target genes. We observed that Apoe−/−Npc1−/− mice displayed a marked increase in total plasma cholesterol mainly due to increased VLDL, reflecting decreased clearance. Although nuclear SREBP-2 and Ldlr mRNA levels were increased in Apoe−/−Npc1−/− liver, LDL-R protein levels were decreased in association with marked induction of proprotein convertase subtilisin/kexin type 9 (Pcsk9) and inducible degrader of the LDL-R (Idol), both known to promote proteolytic degradation of LDL-R. While Pcsk9 is known to be an SREBP-2 target, marked upregulation of IDOL in Apoe−/−Npc1−/− liver was unexpected. However, several other LXR target genes also increased in Apoe−/−Npc1−/− liver, suggesting increased synthesis of endogenous LXR ligands secondary to activation of sterol biosynthesis. In conclusion, we demonstrate that NPC1 deficiency has a major impact on VLDL metabolism in Apoe−/− mice through modulation of hepatic LDL-R protein levels. In contrast to modest induction of hepatic IDOL with synthetic LXR ligands, a striking upregulation of IDOL in Apoe−/−Npc1−/− mice could indicate a role of endogenous LXR ligands in regulation of hepatic IDOL.  相似文献   

20.
Hepatic insulin resistance is associated with increased collagen. Integrin α1β1 is a collagen-binding receptor expressed on hepatocytes. Here, we show that expression of the α1 subunit is increased in hepatocytes isolated from high fat (HF)-fed mice. To determine whether the integrin α1 subunit protects against impairments in hepatic glucose metabolism, we analyzed glucose tolerance and insulin sensitivity in HF-fed integrin α1-null (itga1−/−) and wild-type (itga1+/+) littermates. Using the insulin clamp, we found that insulin-stimulated hepatic glucose production was suppressed by ∼50% in HF-fed itga1+/+ mice. In contrast, it was not suppressed in HF-fed itga1−/− mice, indicating severe hepatic insulin resistance. This was associated with decreased hepatic insulin signaling in HF-fed itga1−/− mice. Interestingly, hepatic triglyceride and diglyceride contents were normalized to chow-fed levels in HF-fed itga1−/− mice. This indicates that hepatic steatosis is dissociated from insulin resistance in HF-fed itga1−/− mice. The decrease in hepatic lipid accumulation in HF-fed itga1−/− mice was associated with altered free fatty acid metabolism. These studies establish a role for integrin signaling in facilitating hepatic insulin action while promoting lipid accumulation in mice challenged with a HF diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号