首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two capsid precursor subunits, which sediment on glycerol gradients at 13S and 14S, respectively, have been identified in cytoplasmic extracts of encephalomyocarditis virus-infected HeLa cells. The 13S subunit, which was detected after a 10-min pulse label with -3H-labeled amino acids, contained only capsid precursor chain A (mol wt 100,000). When the 10-min pulse label in such cells was chased for 20 min, the A-containing 13S subunit in the cytoplasmic extracts was replaced by a 14S subunit containing equimolar proportions of three chains: epsilon, gamma, and alpha. This (epsilon, gamma, alpha)-containing 14S subunit could be dissociated into 6S subunits with the same polypeptide composition. The sedimentation properties and the polypeptide stoichiometry of these three precursor subunits, when compared with those of the 13S, (beta, gamma, alpha)(5), and 5S, (beta, gamma, alpha), subunits derived by acid dissociation of purified virions, suggest the following structural assignments: 13S, (A)(5); 14S, (epsilon, gamma, alpha)(5), 6S, (epsilon, gamma, alpha). The molecular weights of the individually isolated capsid chains were determined by gel filtration in 6 M guanidine hydrochloride to be: epsilon, 36,000; alpha, 32,000; beta, 29,500; gamma, 26,500; and delta, 7,800. With the exception of the delta-chain, these values are in reasonable agreement with the values previously determined by electrophoresis on sodium dodecyl sulfatepolyacrylamide gels. These data support the hypothesis that picornavirus capsids are assembled from identical protomers according to the following scheme: (A) leads to (A)(5) leads to (epsilon, gamma, alpha)(5) leads to (delta, beta, gamma, alpha)60-n(epsilon, gamma, alpha)n where n is the number of immature protomers per virion.  相似文献   

2.
The poliovirus capsid precursor polyprotein, P1, is cotranslationally modified by the addition of myristic acid. We have examined the importance of myristylation of the P1 capsid precursor during the poliovirus assembly process by using a recently described recombinant vaccinia virus expression system which allows the independent production of the poliovirus P1 protein and the poliovirus 3CD proteinase (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991). We constructed a site-directed mutation in the poliovirus cDNA encoding an alanine at the second amino acid position of P1 in place of the glycine residue required for the myristic acid addition and isolated a recombinant vaccinia virus (VVP1myr-) that expressed a nonmyristylated form of the P1 capsid precursor. The 3CD proteinase expressed by a coinfecting vaccinia virus, VVP3, proteolytically processed the nonmyristylated precursor P1 expressed by VVP1myr-. However, the processed capsid proteins, VP0, VP3, and VP1, did not assemble into 14S or 75S subviral particles, in contrast to the VP0, VP3, and VP1 proteins derived from the myristylated P1 precursor. When cells were coinfected with VVP1myr- and poliovirus type 1, the nonmyristylated P1 precursor expressed by VVP1myr- was processed by 3CD expressed by poliovirus, and the nonmyristylated VP0-VP3-VP1 (VP0-3-1) protomers were incorporated into capsid particles and virions which sedimented through a 30% sucrose cushion. Thus, the nonmyristylated P1 precursor and VP0-3-1 protomers were not excluded from sites of virion assembly, and the assembly defects observed for the nonmyristylated protomers were overcome in the presence of myristylated capsid protomers expressed by poliovirus. We conclude that myristylation of the poliovirus P1 capsid precursor plays an important role during poliovirus assembly by facilitating the appropriate interactions required between 5S protomer subunits to form stable 14S pentamers. The results of these studies demonstrate that the independent expression of the poliovirus P1 and 3CD proteins by using recombinant vaccinia viruses provides a unique experimental tool for analyzing the dynamics of the poliovirus assembly process.  相似文献   

3.
Flock house virus (FHV) is a small icosahedral insect virus with a bipartite, messenger-sense RNA genome. Its T=3 icosahedral capsid is initially assembled from 180 subunits of a single type of coat protein, capsid precursor protein alpha (407 amino acids). Following assembly, the precursor particles undergo a maturation step in which the alpha subunits autocatalytically cleave between Asn363 and Ala364. This cleavage generates mature coat proteins beta (363 residues) and gamma (44 residues) and is required for acquisition of virion infectivity. The X-ray structure of mature FHV shows that gamma peptides located at the fivefold axes of the virion form a pentameric helical bundle, and it has been suggested that this bundle plays a role in release of viral RNA during FHV uncoating. To provide experimental support for this hypothesis, we generated mutant coat proteins that carried deletions in the gamma region of precursor protein alpha. Surprisingly, we found that these mutations interfered with specific recognition and packaging of viral RNA during assembly. The resulting particles contained large amounts of cellular RNAs and varying amounts of the viral RNAs. Single-site amino acid substitution mutants showed that three phenylalanines located at positions 402, 405, and 407 of coat precursor protein alpha were critically important for specific recognition of the FHV genome. Thus, in addition to its hypothesized role in uncoating and RNA delivery, the C-terminal region of coat protein alpha plays a significant role in recognition of FHV RNA during assembly. A possible link between these two functions is discussed.  相似文献   

4.
5.
U Boege  D S Ko    D G Scraba 《Journal of virology》1986,57(1):275-284
Mengovirus 14S subviral protein particles generated in infected L cells and in a cell-free translation system primed with mengovirus RNA were purified by sucrose gradient centrifugation and immunoaffinity chromatography. The preparations from both sources contained essentially pure proteins epsilon, alpha, and gamma, as was demonstrated in terms of virus-specific proteins (by autoradiography) and total protein content (by silver staining of sodium dodecyl sulfate-polyacrylamide electrophoresis gels). These purified proteins sedimented as discrete particles at the 14S position when recentrifuged in sucrose gradients. Although their assembly properties have not yet been studied in detail, preliminary results indicate that during incubation with virion RNA the 14S particles purified from infected cells can form a structure cosedimenting with mature mengovirus.  相似文献   

6.
Incorporation of the epsilon subunit into the GABAA receptor has been suggested to confer unusual, but variable, biophysical and pharmacological characteristics to both recombinant and native receptors. Due to their structural similarity with the gamma subunits, epsilon subunits have been assumed to substitute at the single position of the gamma subunit in assembled receptors. However, prior work suggests that functional variability in epsilon-containing receptors may reflect alternative sites of incorporation and of not just one, but possibly multiple epsilon subunits in the pentameric receptor complex. Here we present data indicating that increased expression of epsilon, in conjunction with alpha2 and beta3 subunits, results in expression of GABAA receptors with correspondingly altered rectification, deactivation and levels of spontaneous openings, but not increased total current density. We also provide data that the epsilon subunit, like the beta3 subunit, can self-export and data from chimeric receptors suggesting that similarities between the assembly domains of the beta3 and the epsilon subunits may allow the epsilon subunit to replace the beta, as well as the gamma, subunit. The substitution of an epsilon for a beta, as well as the gamma subunit and formation of receptors with alternative patterns of assembly with respect to epsilon incorporation may underlie the observed variability in both biophysical and pharmacological properties noted not only in recombinant, but also in native receptors.  相似文献   

7.
《The Journal of cell biology》1990,111(6):2601-2611
We have used fibroblast clones expressing muscle nicotinic acetylcholine receptor alpha and gamma, and alpha and delta subunits to measure the kinetics of subunit assembly, and to study the properties of the partially assembled products that are formed. We demonstrate by coimmunoprecipitation that assembly intermediates in fibroblasts coexpressing alpha and delta subunits are formed in a time-dependent manner. The alpha and gamma- and the alpha and delta-producing transfected cells form complexes that, when labeled with 125I-alpha- bungarotoxin, migrate in sucrose gradients at 6.3S, a value consistent with a hetero-dimer structure. An additional peak at 8.5S is formed from the alpha and gamma subunits expressed in fibroblasts suggesting that gamma may have more than one binding site for alpha subunit. The stability and specificity of formation of these partially assembled complexes suggests that they are normal intermediates in the assembly of acetylcholine receptor. Comparison of the binding of 125I-alpha- bungarotoxin to intact and detergent-extracted fibroblasts indicate that essentially all of the binding sites are retained in an intracellular pool. The fibroblast delta subunit has the electrophoretic mobility in SDS-PAGE of a precursor that does not contain complex carbohydrates. In addition, alpha gamma and alpha delta complexes had lectin binding properties expected of subunits lacking complex oligosaccharides. Therefore, fibroblasts coexpressing alpha and gamma or alpha and delta subunits produce discrete assembly intermediates that are retained in an intracellular compartment and are not processed by Golgi enzymes.  相似文献   

8.
Assembly of Torpedo acetylcholine receptors in Xenopus oocytes   总被引:3,自引:2,他引:1       下载免费PDF全文
To study pathways by which acetylcholine receptor (AChR) subunits might assemble, Torpedo alpha subunits were expressed in Xenopus oocytes alone or in combination with beta, gamma, or delta subunits. The maturation of the conformation of the main immunogenic region (MIR) on alpha subunits was measured by binding of mAbs and the maturation of the conformation of the AChR binding site on alpha subunits was measured by binding of alpha-bungarotoxin (alpha Bgt) and cholinergic ligands. The size of subunits and subunit complexes was assayed by sedimentation on sucrose gradients. It is generally accepted that native AChRs have the subunit composition alpha 2 beta gamma delta. Torpedo alpha subunits expressed alone resulted in an amorphous range of complexes with little affinity for alpha Bgt or mAbs to the MIR, rather than in a unique 5S monomeric assembly intermediate species. A previously recognized temperature-dependent failure in alpha subunit maturation may cause instability of the monomeric assembly intermediate and accumulation of aggregated denatured alpha subunits. Coexpression of alpha with beta subunits also resulted in an amorphous range of complexes. However, coexpression of alpha subunits with gamma or delta subunits resulted in the efficient formation of 6.5S alpha gamma or alpha delta complexes with high affinity for mAbs to the MIR, alpha Bgt, and small cholinergic ligands. These alpha gamma and alpha delta subunit pairs may represent normal assembly intermediates in which Torpedo alpha is stabilized and matured in conformation. Coexpression of alpha, gamma, and delta efficiently formed 8.8S complexes, whereas complexes containing alpha beta and gamma or alpha beta and delta subunits are formed less efficiently. Assembly of beta subunits with complexes containing alpha gamma and delta subunits may normally be a rate-limiting step in assembly of AChRs.  相似文献   

9.
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A GABA(A) receptor alpha1 subunit epilepsy mutation (alpha1(A322D)) introduces a negatively charged aspartate residue into the hydrophobic M3 transmembrane domain of the alpha1 subunit. We reported previously that heterologous expression of alpha1(A322D)beta2gamma2 receptors in mammalian cells resulted in reduced total and surface alpha1 subunit protein. Here we demonstrate the mechanism of this reduction. Total alpha1(A322D) subunit protein was reduced relative to wild type protein by a similar amount when expressed alone (86 +/- 6%) or when coexpressed with beta2 and gamma2S subunits (78 +/- 6%), indicating an expression reduction prior to subunit oligomerization. In alpha1beta2gamma2S receptors, endoglycosidase H deglycosylated only 26 +/- 5% of alpha1 subunits, consistent with substantial protein maturation, but in alpha1(A322D)beta2gamma2S receptors, endoglycosidase H deglycosylated 91 +/- 4% of alpha1(A322D) subunits, consistent with failure of protein maturation. To determine the cellular localization of wild type and mutant subunits, the alpha1 subunit was tagged with yellow (alpha1-YFP) or cyan (alpha1-CFP) fluorescent protein. Confocal microscopic imaging demonstrated that 36 +/- 4% of alpha1-YFPbeta2gamma2 but only 5 +/- 1% alpha1(A322D)-YFPbeta2gamma2 colocalized with the plasma membrane, whereas the majority of the remaining receptors colocalized with the endoplasmic reticulum (55 +/- 4% alpha1-YFPbeta2gamma2S, 86 +/- 3% alpha1(A322D)-YFP). Heterozygous expression of alpha1-CFPbeta2gamma2S and alpha1(A322D)-YFPbeta2gamma2S or alpha1-YFPbeta2gamma2S and alpha1(A322D)-CFPbeta2gamma2S receptors showed that membrane GABA(A) receptors contained primarily wild type alpha1 subunits. These data demonstrate that the A322D mutation reduces alpha1 subunit expression after translation, but before assembly, resulting in endoplasmic reticulum-associated degradation and membrane alpha1 subunits that are almost exclusively wild type subunits.  相似文献   

11.
Analysis of early events in acetylcholine receptor assembly   总被引:4,自引:2,他引:2       下载免费PDF全文
Mammalian cell lines expressing nicotinic acetylcholine receptor (AChR) subunit cDNAs from Torpedo californica were used to study early events in AChR assembly. To test the hypothesis that individual subunits form homooligomeric intermediates before assembling into alpha 2 beta gamma delta pentamers, we analyzed the sedimentation on sucrose density gradients of each subunit expressed separately in cell lines. We have shown previously that the acute temperature sensitivity of Torpedo AChR subunit assembly is due, in part, to misfolding of the polypeptide chains (Paulson, H.L., and T. Claudio. 1990. J. Cell Biol. 110:1705-1717). We use this phenomenon to further analyze putative assembly-competent intermediates. In nonionic detergent at an assembly-permissive temperature, the majority of alpha, beta, gamma, and delta subunits sediment neither as 3-4S monomers nor as 9S complexes, but rather as 6S species whether synthesized in fibroblasts, myoblasts, or differentiated myosyncytia. Several results indicate that the 6S species are complexes comprised predominantly of incorrectly folded subunit polypeptides. The complexes represent homoaggregates which form rapidly within the cell, are stable to mild SDS treatment and, in the case of alpha, contain some disulfide-linked subunits. The coprecipitation of alpha subunit with BiP or GRP78, a resident protein of the ER, further indicates that at least some of these internally sequestered subunits also associated with an endogenous protein implicated in protein folding. The majority of subunits expressed in these cell lines appear to be aggregates of subunits which are not assembly intermediates and are not assembly-competent. The portion which migrates as monomer, in contrast, appears to be the fraction which is assembly competent. This fraction increases at temperatures more permissive for assembly, further indicating the importance of the monomer as the precursor to assembly of alpha 2 beta gamma delta pentamers.  相似文献   

12.
Most T lymphocytes express on their surfaces a multisubunit receptor complex, the T cell antigen receptor (TCR) containing alpha, beta, gamma, delta, epsilon, and zeta molecules, that has been widely studied as a model system for protein quality control. Although the parameters of TCR assembly are relatively well established, little information exists regarding the stage(s) of TCR oligomerization where folding of TCR proteins is completed. Here we evaluated the modification of TCR glycoproteins by the endoplasmic reticulum folding sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (GT) as a unique and sensitive indicator of how TCR subunits assembled into multisubunit complexes are perceived by the endoplasmic reticulum quality control system. These results demonstrate that all TCR subunits containing N-glycans were modified by GT and that TCR proteins were differentially reglucosylated during their assembly with partner TCR chains. Importantly, these data show that GT modification of most TCR subunits persisted until assembly of CD3alpha beta chains and formation of CD3-associated, disulfide-linked alpha beta heterodimers. These studies provide a novel evaluation of the folding status of TCR glycoproteins during their assembly into multisubunit complexes and are consistent with the concept that TCR folding is finalized convergent with formation of alpha beta delta epsilon gamma epsilon complexes.  相似文献   

13.
The ATPase activity of soluble chloroplast coupling factor (CF1) was irreversibly inactivated by phenylglyoxal, an arginine reagent. Under the conditions of inactivation, 2.48 mol of [14C]phenylglyoxal were incorporated per 400,000 g of enzyme when the ATPase was inactivated 50% by the reagent. Isolation of the component polypeptide subunits of the [14C]phenylglyoxal-modified enzyme revealed that the distribution of moles of labeled reagent/mol of subunit was the following: alpha, 0.37; beta, 0.40; gamma, 0.08; delta, none; epsilon, 0.03. CNBr treatment of the isolated alpha and beta subunits and fractionation of the peptides by gel electrophoresis revealed that the radioactivity bound to the alpha subunit was nonspecifically associated with several peptides, while a single peptide derived from the beta subunit contained the majority of the radioactivity associated with this subunit. After treating the isolated beta subunit with trypsin and Staphylococcus aureus protease, a major radioactive peptide was isolated with a sequence Arg-Ile-Thr-Ser-Ile-Lys. This sequence, when compared with the primary structure of the CF1 beta subunit as translated from the gene (Zurawski, G., Bottomley, W., and Whitfeld, P. R. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6260-6264) indicated that the arginine marked with the asterisk, the predominant residue modified by phenylglyoxal when the ATPase activity of CF1 is inactivated by the reagent, is Arg 312.  相似文献   

14.
The filamentous bacteriophage Pf3 consists of a covalently closed DNA single strand of 5833 nucleotides sheathed by approximately 2500 copies of a 44-residue capsid subunit. The capsid subunit contains a single tryptophan residue (Trp-38), which is located within the basic C-terminal sequence (-RWIKAQFF) and is essential for virion assembly in vivo. Polarized Raman microspectroscopy has been employed to determine the orientation of the Trp-38 side chain in the native virus structure. The polarized Raman measurements show that the plane of the indolyl ring is tilted by 17 degrees from the virion axis and that the indolyl pseudo-twofold axis is inclined at 46 degrees to the virion axis. Using the presently determined orientation of the indolyl ring and side-chain torsion angles, chi(1) (N-C(alpha)-C(beta)-C(gamma)) and chi(2,1) (C(alpha)-C(beta)-C(gamma)-C(delta1)), we propose a detailed molecular model for the local structure of Trp-38 in the Pf3 virion. The present Pf3 model is consistent with previously reported Raman, ultraviolet-resonance Raman and fluorescence results suggesting an unusual environment for Trp-38 in the virion assembly, probably involving an intrasubunit cation-pi interaction between the guanidinium moiety of Arg-37 and the indolyl moiety of Trp-38. Such a C-terminal Trp-38/Arg-37 interaction may be important for the stabilization of a subunit conformation that is required for binding to the single-stranded DNA genome during virion assembly.  相似文献   

15.
GABA(A) receptors in the CNS are pentameric molecules composed of alpha, beta, gamma, delta, epsilon and theta subunits. Studies on transfected cells have shown that GABA(A) receptor beta subunit isoforms can direct alpha1 subunit localization within the cell. To examine the role of selected subunits in governing GABA(A) receptor expression in neurons, cultures of rat cerebellar granule cells were grown with antisense or sense oligodeoxynucleotides (ODNs) specific for the alpha 1, beta 2 or gamma 2 subunits. These subunits are all expressed in granule neurons where they are thought to contribute to an abundant receptor type. Following ODN treatment, subunit expression and distribution were examined by western blotting, immunocytochemistry and RT-PCR. Treatment of the cultures with the antisense, but not the corresponding sense, ODNs reduced the levels of the targeted subunit polypeptides. In addition, the beta 2 antisense ODN reduced the level of the alpha1 subunit polypeptide without altering the level of its mRNA. In contrast, treatment with the beta 2 subunit antisense ODN did not alter gamma 2 subunit polypeptide expression, distribution or mRNA level. These findings suggest that the alpha1 subunit requires a beta subunit for assembly into GABA(A) receptors in cerebellar granule neurons.  相似文献   

16.
Human rhinovirus 14 has a pseudo T = 3 icosahedral structure in which 60 copies of the three larger capsid proteins VP1, VP2 and VP3 are arranged in an icosahedral surface lattice, reminiscent of T = 3 viruses such as tomato bushy stunt virus and southern bean mosaic virus. The overall secondary and tertiary structures of VP1, VP2 and VP3 are very similar. The structure of human rhinovirus 14, which was refined at a resolution of 3.0 A [R = 0.16 for reflections with F greater than 3 sigma(F)], is here analyzed in detail. Quantitative analysis of the surface areas of contact (proportional to hydrophobic free energy of association) supports the previously assigned arrangement within the promoter, in which interactions between VP1 and VP3 predominate. Major contacts among VP1, VP2 and VP3 are between the beta-barrel moieties. VP4 is associated with the capsid interior by a distributed network of contacts with VP1, VP2 and VP3 within a promoter. As the virion assembly proceeds, the solvent-accessible surface area becomes increasingly hydrophilic in character. A mixed parallel and antiparallel seven-stranded sheet is composed of the beta C, beta H, beta E and beta F strands of VP3 in one pentamer and beta A1 and beta A2 of VP2 and the VP1 amino terminus in another pentamer. This association plays an essential role in holding pentamers together in the mature virion as this contact region includes more than half of the total short non-bonded contacts between pentamers. Contacts between protomers within pentamers are more extensive than the contacts between pentamers, accounting in part for the stability of pentamers. The previously identified immunogenic regions are correlated with high solvent accessibility, accessibility to large probes and also high thermal parameters. Surface residues in the canyon, the putative cellular receptor recognition site, have lower thermal parameters than other portions of the human rhinovirus 14 surface. Many of the water molecules in the ordered solvent model are located at subunit interfaces. A number of unusual crevices exist in the protein shell of human rhinovirus 14, including the hydrophobic pocket in VP1 which is the locus of binding for the WIN antiviral agents. These may be required for conformational flexibility during assembly and disassembly. The structures of the beta-barrels of human rhinovirus 14 VP1, VP2 and VP3 are compared with each other and with the southern bean mosaic virus coat protein.  相似文献   

17.
The high affinity receptor for IgE (Fc epsilon RI) found on mast cells and basophils is a tetrameric complex of a single alpha subunit, a single beta subunit, and two identical gamma subunits. The genes for the three subunits of mouse Fc epsilon RI have now been cloned from the mast cell line, PT18. When compared at the DNA level, the rat and mouse subunits are similarly conserved. However, at the protein level the homology between mouse and rat alpha is surprisingly low (71% identities) especially in the cytoplasmic regions (57% identities) which are of different length (25 and 20 residues, respectively). By contrast the beta and gamma are homogeneously conserved between mouse and rat (83 and 93% identities, respectively). The consensus amino acid sequence of the alpha subunit derived from three species (rat, mouse, and human) shows that the cytoplasmic tail diverges to the same extent as the leader peptide. Conversely, the transmembrane domain of the alpha is highly conserved and contains 10 consecutive residues that are identical. Comparisons between mouse Fc epsilon RI and other mouse proteins reveal regions of high homology between the alpha subunit and Fc gamma RIIa and between the gamma subunit and the zeta chain of the T cell receptor. Cells transfected with the alpha gene express the alpha subunit on their surface very inefficiently. Efficient expression is only achieved after co-transfection of the three rodent genes or of the human alpha gene together with the rodent gamma without apparent need for beta. The subunits are completely interchangeable upon transfection so that various chimeric mouse-rat-human receptors can be expressed.  相似文献   

18.
Cysteine residues have been exchanged for serine residues at positions 10 and 108 in the epsilon subunit of the Escherichia coli F1 ATPase by site-directed mutagenesis to create two mutants, epsilon-S10C and epsilon-S108C. These two mutants and wild-type enzyme were reacted with [14C]N-ethylmaleimide (NEM) to examine the solvent accessibility of Cys residues and with novel photoactivated cross-linkers, tetrafluorophenyl azide-maleimides (TFPAM's), to examine near-neighbor relationships of subunits. In native wild-type F1 ATPase, NEM reacted with alpha subunits at a maximal level of 1 mol/mol of enzyme (1 mol/3 alpha subunits) and with the delta subunit at 1 mol/mol of enzyme; other subunits were not labeled by the reagent. In the mutants epsilon-S10C and epsilon-S108C, Cys10 and Cys108, respectively, were also labeled by NEM, indicating that these are surface residues. Reaction of wild-type enzyme with TFPAM's gave cross-linking of the delta subunit to both alpha and beta subunits. Reaction of the mutants with TFPAM's also cross-linked delta to alpha and beta and in addition formed covalent links between Cys10 of the epsilon subunit and the gamma subunit and between Cys108 of the epsilon subunit and the alpha subunit. The yield of cross-linking between sites on epsilon and other subunits depended on the nucleotide conditions used; this was not the case for delta-alpha or delta-beta cross-linked products. In the presence of ATP+EDTA the yield of cross-linking between epsilon-Cys10 and gamma was high (close to 50%) while the yield of epsilon-Cys108 and alpha was low (around 10%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The high affinity receptor for IgE (Fc epsilon RI) is present on mast cells and basophils, and the aggregation of IgE-occupied receptors by Ag is responsible for the release of allergic mediators. The Fc epsilon RI is composed of at least three different subunits, alpha, beta, and gamma, with the alpha subunit binding IgE. The series of biochemical events linking receptor aggregation to the release of mediators has not been fully delineated. As a step towards understanding these processes, and for the development of functional cell lines, we have transfected the human Fc epsilon RI alpha subunit into the rat mast cell line RBL 2H3. These human Fc epsilon RI alpha-transfected cell lines have been characterized with respect to the association of the human alpha subunit with endogenous rat beta and gamma subunits and the ability of aggregated Fc epsilon RI alpha subunits to mediate a variety of biochemical events. The signal transduction events monitored include phosphoinositide hydrolysis, Ca2+ mobilization, tyrosine phosphorylation, histamine release, and arachidonic acid metabolism. In all cases, the events mediated by aggregating human Fc epsilon RI alpha subunits were indistinguishable from those produced via the rat Fc epsilon RI alpha. These results demonstrate that the human Fc epsilon RI alpha subunit can functionally substitute for the rat Fc epsilon RI alpha subunit during signal transduction. The availability of this cell line will provide a means of evaluating potential Fc epsilon RI antagonists.  相似文献   

20.
The activity of eukaryotic initiation factor eIF-2 as to the formation of the ternary complex, eIF-2 GTP Met-tRNA(f), is inhibited by N-ethylmaleimide. Our preparation of pig liver eIF-2 contained alpha and gamma subunits and was inhibited by more than 90% by N-ethylmaleimide. Using our eIF-2, we determined the sequences around the N-ethylmaleimide-reactive sulfhydryl groups, studied the effect of GDP on the sulfhydryl modification and that of NEM on the [3H]GDP binding, and examined the protective effect of GTP against the inhibition of ternary complex formation by N-ethylmaleimide. Both subunits of native eIF-2 contained [14C]N-ethylmaleimide-reactive sulfhydryl groups. One N-ethylmaleimide-reactive sulfhydryl group was in the alpha subunit and 4 were in the gamma subunit. The sequence of the peptide of the alpha subunit was determined to be: Ala-Gly-Leu-Asn-Cys-Ser-Thr-Glu-Thr-Met-Pro-Ile. Two of the four [14C]N-ethylmaleimide-reactive sulfhydryl groups in the gamma subunit were highly reactive, their sequences being: Ile-Val-Leu-Thr-Asn-Pro-Val-Cys-Thr-Glu-Val-Gly-Glu-Lys (gamma 1); Ser-Cys-Gly-Ser-Ser-Thr-Pro-Asp-Glu-Phe-Pro-Thr-Asp-Ile-Pro-Gly-Thr-Lys (gamma 3a). Peptide gamma 3a contained the consensus sequence element (AspXaaXaaGly) of GTP-binding proteins. With preincubation of eIF-2 with GDP, the incorporation of [14C]N-ethylmaleimide into the gamma subunit was reduced to 40% of the control level, but the 14C-incorporation into the alpha subunit did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号