首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phoenix et al. (Phoenix, C., Goy, R., Gerall, A., Young, W., 1959. Organizing actions of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382.) were the first to propose an essential role of fetal testosterone exposure in the sexual differentiation of the capacity of mammals to display male-typical mating behavior. In one experiment control male and female guinea pigs as well as females given fetal testosterone actually showed equivalent levels of mounting behavior when gonadectomized and given ovarian steroids prior to adult tests with a stimulus female. This finding is discussed in the context of a recent, high-profile paper by Kimchi et al. (Kimchi, T., Xu, J., Dulac, C., 2007. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014.) arguing that female rodents possess the circuits that control the expression of male-typical mating behavior and that their function is normally suppressed in this sex by pheromonal inputs that are processed via the vomeronasal organ (VNO)-accessory olfactory nervous system. In another Phoenix et al. experiment, significantly more mounting behavior was observed in male guinea pigs and in females given fetal testosterone than in control females following adult gonadectomy and treatment with testosterone. Literature is reviewed that attempts to link sex differences in the anatomy and function of the accessory versus the main olfactory projections to the amygdala and hypothalamus to parallel sex differences in courtship behaviors, including sex partner preference, as well as the capacity to display mounting behavior.  相似文献   

2.
After proposing the organizational hypothesis from research in prenatally androgenized guinea pigs (Phoenix, C.H., Goy, R.W., Gerall, A.A., Young, W.C., 1959. Organizational action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382.), the same authors almost immediately extended the hypothesis to a nonhuman primate model, the rhesus monkey. Studies over the last 50 years have verified that prenatal androgens have permanent effects in rhesus monkeys on the neural circuits that underlie sexually dimorphic behaviors. These behaviors include both sexual and social behaviors, all of which are also influenced by social experience. Many juvenile behaviors such as play, mounting, and vocal behaviors are masculinized and/or defeminized, and aspects of adult sexual behavior are both masculinized (e.g. approaches, sex contacts, and mounts) and defeminized (e.g. sexual solicits). Different behavioral endpoints have different periods of maximal susceptibility to the organizing actions of prenatal androgens. Aromatization is not important, as both testosterone and dihydrotestosterone are equally effective in rhesus monkeys. Although the full story of the effects of prenatal androgens on sexual and social behaviors in the rhesus monkey has not yet completely unfolded, much progress has been made. Amazingly, a large number of the inferences drawn from the original 1959 study have proved applicable to this nonhuman primate model.  相似文献   

3.
Early workers interested in the mechanisms mediating sex differences in morphology and behavior assumed that differences in behavior that are commonly observed between males and females result from the sex specificity of androgens and estrogens. Androgens were thought to facilitate male-typical traits, and estrogens were thought to facilitate female-typical traits. By the mid-20th century, however, it was apparent that administering androgens to females or estrogens to males was not always effective in sex-reversing behavior and that in some cases a “female” hormone such as an estrogen could produce male-typical behavior and an androgen could induce female-typical behavior. These conceptual difficulties were resolved to a large extent by the seminal paper of C. H. Phoenix, R. W. Goy, A. A. Gerall, and W. C. Young in (1959,Endocrinology65, 369–382) that illustrated that several aspects of sexual behavior are different between males and females because the sexes have been exposed during their perinatal life to a different endocrine milieu that has irreversibly modified their response to steroids in adulthood. Phoenixet al.(1959) therefore formalized a clear dichotomy between the organizational and activational effects of sex steroid hormones. Since this paper, a substantial amount of research has been carried out in an attempt to identify the aspects of brain morphology or neurochemistry that differentiate under the embryonic/neonatal effects of steroids and are responsible for the different behavioral response of males and females to the activation by steroids in adulthood. During the past 25 years, research in behavioral neuroendocrinology has identified many sex differences in brain morphology or neurochemistry; however many of these sex differences disappear when male and female subjects are placed in similar endocrine conditions (e.g., are gonadectomized and treated with the same amount of steroids) so that these differences appear to be of an activational nature and cannot therefore explain sex differences in behavior that are still present in gonadectomized steroid-treated adults. This research has also revealed many aspects of brain morphology and chemistry that are markedly affected by steroids in adulthood and are thought to mediate the activation of behavior at the central level. It has been explicitly, or in some cases, implicitly assumed that the sexual differentiation of brain and behavior driven by early exposure to steroids concerns primarily those neuroanatomical/neurochemical characteristics that are altered by steroids in adulthood and presumably mediate the activation of behavior. Extensive efforts to identify these sexually differentiated brain characteristics over the past 20 years has only met with limited success, however. As regards reproductive behavior, in all model species that have been studied it is still impossible to identify satisfactorily brain characteristics that differentiate under early steroid action and explain the sex differences in behavioral activating effects of steroids. This problem is illustrated by research conducted on Japanese quail (Coturnix japonica), an avian model system that displays prominent sex differences in the sexual behavioral response to testosterone, and in which the endocrine mechanisms that control sexual differentiation of behavior have been clearly identified so that subjects with a fully sex-reversed behavioral phenotype can be easily produced. In this species, studies of sex differences in the neural substrate mediating the action of steroids in the brain, including the activity of the enzymes that metabolize steroids such as aromatase and the distribution of steroid hormone receptors as well as related neurotransmitter systems, did not result in a satisfactory explanation of sex differences in the behavioral effectiveness of testosterone. Possible explanations for the relative failure to identify the organized brain characteristics responsible for behavioral sex differences in the responsiveness to steroids are presented. It is argued that novel research strategies may have to be employed to successfully attack the fundamental question of the hormonal mechanisms regulating sex differences in behavior.  相似文献   

4.
Summary In many vertebrates, seasonal activation of sexual and territorial behaviors coincides with seasonal gonadal activation and is caused by the increase in sex steroid hormones. Both male and femaleSceloporus jarrovi are territorial, but in this species territorial behavior is seasonally activated in late April, months before seasonal gonadal maturation, which occurs in August prior to the fall mating season. Measurements of seasonal changes in circulating levels of the sex steroid hormones testosterone, progesterone, and estradiol indicated that testosterone levels in both sexes are elevated when territorial behavior is expressed, even during the period of nonbreeding-season territoriality during the summer. This suggests that a nonbreeding season behavior is activated by a sex steroid hormone in this species.  相似文献   

5.
Phoenix, Goy, Gerall, and Young first proposed in 1959 the organizational–activational hypothesis of hormone-driven sex differences in brain and behavior. The original hypothesis posited that exposure to steroid hormones early in development masculinizes and defeminizes neural circuits, programming behavioral responses to hormones in adulthood. This hypothesis has inspired a multitude of experiments demonstrating that the perinatal period is a time of maximal sensitivity to gonadal steroid hormones. However, recent work from our laboratory and others demonstrates that steroid-dependent organization of behavior also occurs during adolescence, prompting a reassessment of the developmental time-frame within which organizational effects are possible. In addition, we present evidence that adolescence is part of a single protracted postnatal sensitive period for steroid-dependent organization of male mating behavior that begins perinatally and ends in late adolescence. These findings are consistent with the original formulation of the organizational/activational hypothesis, but extend our notions of what constitutes “early” development considerably. Finally, we present evidence that female behaviors also undergo steroid-dependent organization during adolescence, and that social experience modulates steroid-dependent adolescent brain and behavioral development. The implications for human adolescent development are also discussed, especially with respect to how animal models can help to elucidate the factors underlying the association between pubertal timing and adult psychopathology in humans.  相似文献   

6.
In sex‐role‐reversed species, sexual selection acts more strongly on females than on males, a situation that can result in the evolution of secondary sexual traits in females and strong mating preferences in males. While some research exploring mating preferences in sex‐role‐reversed species has been conducted, overall, this topic remains relatively unexplored. The Gulf pipefish, Syngnathus scovelli, is a highly polyandrous pipefish species. Sexual selection is significantly stronger in females than in males, which has led to the evolution of both morphological and behavioral female secondary sexual traits. However, because males gestate the offspring in specialized pouches and make a substantial investment in embryos during development, females may also benefit from being choosy. The goal of this study was to examine both male and female mating preferences in this species. We found that male mating preference was significantly associated with female courtship behavior. Larger females were also able to maintain these behaviors for longer intervals than smaller females. No evidence of female mating preference in regard to male size was observed but the data suggest that male behaviors may be providing positive reinforcement to courting females. This research provides further insight into how mate preferences vary among sex‐role‐reversed species.  相似文献   

7.
The 1959 publication of the paper by Phoenix et al. was a major turning point in the study of sexual differentiation of the brain. That study showed that sex differences in behavior, and by extension in the brain, were permanently sexually differentiated by testosterone, a testicular secretion, during an early critical period of development. The study placed the brain together in a class with other major sexually dimorphic tissues (external genitalia and genital tracts), and proposed an integrated hormonal theory of sexual differentiation for all of these non-gonadal tissues. Since 1959, the organizational–activational theory has been amended but survives as a central concept that explains many sex differences in phenotype, in diverse tissues and at all levels of analysis from the molecular to the behavioral. In the last two decades, however, sex differences have been found that are not explained by such gonadal hormonal effects, but rather because of the primary action of genes encoded on the sex chromosomes. To integrate the classic organizational and activational effects with the more recently discovered sex chromosome effects, we propose a unified theory of sexual differentiation that applies to all mammalian tissues.  相似文献   

8.
Environmental cues and social interactions are known to influence reproductive physiology and behavior in vertebrates. In female birds, male courtship displays can result in the growth of ovarian follicles, the production of reproductive hormones, and stimulation of oviduct development, all of which have the potential to influence maternal investment. Male Japanese quail follow a typical sequence of copulatory behaviors during a mating interaction and often force copulations with unreceptive females. We hypothesized that female Japanese quail could adjust maternal investment in response to male copulatory behaviors during a single mating interaction. We investigated the relationships between 1) male copulatory behaviors and post-mating concentrations of steroids in the female, 2) female steroid concentrations and fertilization success of inseminations and 3) female steroid concentrations and the offspring sex ratio. We found that male condition and copulatory behaviors predicted female steroid concentrations and maternal investment in eggs laid after a mating trial. The body condition of one or both mates was a significant predictor of the changes in female corticosterone and testosterone concentrations after mating, whereas specific male copulatory behaviors significantly predicted changes in female progesterone concentrations. Male and female body condition, male neck grabs and post-mating concentrations of female corticosterone, progesterone, and testosterone were all significant predictors of egg fertilization rates. Female body condition, male copulation efficiency, and female testosterone concentrations were significant predictors of offspring sex ratios. Our results show that phenotypic and behavioral characteristics of male Japanese quail modulate female steroid concentrations and result in changes in maternal investment.  相似文献   

9.
Testosterone is the main circulating steroid hormone in males, and acts to facilitate sexual behavior via both reduction to dihydrotestosterone (DHT) and aromatization to estradiol. The mPOA is a key site involved in mediating actions of androgens and estrogens in the control of masculine sexual behavior, but the respective roles of these hormones is not fully understood. As males age they show impairments in sexual function, and a decreased facilitation of behavior by steroid hormones compared to younger animals. We hypothesized that an anatomical substrate for these behavioral changes is a decline in expression and/or activation of hormone receptor-sensitive cells in the mPOA. We tested this by quantifying and comparing numbers of AR- and ERα-containing cells, and Fos as a marker of activated neurons, in the mPOA of mature (4–5 months) and aged (12–13 months) male rats, assessed one hour after copulation to one ejaculation. Numbers of AR- and ERα cells did not change with age or after sex, but the percentage of AR- and ERα-cells that co-expressed Fos were significantly up-regulated by sex, independent of age. Age effects were found for the percentage of Fos cells that co-expressed ERα (up-regulated in the central mPOA) and the percentage of Fos cells co-expressing AR in the posterior mPOA. Interestingly, serum estradiol concentrations positively correlated with intromission latency in aged but not mature animals. These data show that the aging male brain continues to have high expression and activation of both AR and ERα in the mPOA with copulation, raising the possibility that differences in relationships between hormones, behavior, and neural activation may underlie some age-related impairments.  相似文献   

10.
Two chemical signals are essential in all cockroach sexual behavioral sequences: the sex pheromone released by one partner, generally the female (for long distance attraction), and an aphrodisiac sex pheromone produced exclusively by male tergal glands (for female mounting and tergal contact or feeding behavior). Unlike the other cockroach groups, the males of the Oxyhaloinae species produce both chemical signals: the pheromone and the aphrodisiac. The occurrence of three patterns of mating behavior (A, B, and C), the production of male sex pheromones, and the existence in the male of developed sternal and tergal glands in seven related Oxyhaloinae species, make these cockroaches a useful model for studying the evolution of mating behavior patterns. The various types of mating behavior were not classified in the previous studies by Roth and Barth. In this report, they have been named type A (female in upper position), B (male in upper position), and C (male and female end to end). In type A mating, the male tergal glands, which are licked by the females, are well developed, whereas in types B and C, there is no licking of the male's tergal secretion by the females and the tergal glands are much less developed; the aphrodisiacs secreted by the tergal glands may no longer act in this case through contact chemoreception, but through an olfactory process involving volatile components. One common sex pheromone component seems to be acetoin. I suggest that the mating behavior tends from A toward B and C during the evolutionary process with a concomitant regression of the tergal glands and changes in the aphrodisiac emission levels. The mating behavioral sequences of cockroaches (Dictyoptera) and crickets (Orthoptera) show a striking degree of similarity and are probably examples of convergent evolution.  相似文献   

11.
Interest in Drosophila courtship behavior has a long-standing tradition, starting with the works by Sturtevant in 1915, and by Bastock and Manning in the 50s. The neural and genetic base of Drosophila melanogaster courtship behavior has made big strides in recent years, but the studies on males far outnumber those on females. Recent technical developments have made it possible to begin to unravel the biological substrates underlying the complexity of Drosophila female sexual behavior and its decisive effect on mating success. The present review focus more on the female side and summarizes the sensory signals that the male sends, using multiple channels, and which neural circuits and genes are mediating sex-specific behavioral responses.  相似文献   

12.
In this paper, we focus on the reproductive behavior of the cockroach Oxyhaloa deusta. Within the Oxyhaloinae subfamily, mating strategies and glandular areas involved in pheromone production have been studied for several genera belonging to the Nauphoetini and Gromphadorhini tribes. However, this is the first time that courtship and mating behavior have been explored within the genus Oxyhaloa, and in a more general way within the Oxyhaloini tribe. This work, comprising behavioral observations, olfactometric bio-assays and morphological data, highlights unusual behaviors and novelties in potential sex pheromone gland location, in both males (tergite 8) and females (supra-valvular area). Surprisingly, our results also indicate that mate finding is initiated by the female. This is quite remarkable inasmuch as the Oxyhaloinae subfamily is the only cockroach group in which males initiate mate finding by means of a sex pheromone, emitted during the calling posture by extending abdominal tergites. In the Oxyhaloinae subfamily, this occurrence of various reproductive behavioral patterns (including all the mating patterns known at present in Blattaria) in closely-related species is striking, and makes this group a suitable model for studying the changes in mating behavior correlated with the location of sexual glands.  相似文献   

13.
Our “Organizing Action” paper published in 1959 put forward the concept that prenatal exposure to testosterone masculinized the behavior of genetic female guinea pigs. Specifically, we proposed that testosterone or some metabolite acted on the central nervous tissues in which patterns of sexual behavior are organized. We later went on to demonstrate similar effects in rhesus monkeys by showing that play behavior by female monkeys prenatally treated with testosterone was masculinized as well. These findings support the organizing actions of androgens as a general process of sexual differentiation.  相似文献   

14.
Estrous female domestic rabbits (Oryctolagus cuniculus) display scent marking (“chinning”) and sexual receptivity. Mating induces ovulation, which occurs approximately 12 h later, and also decreases chinning and receptivity. In the present study, we explored the participation of mating-associated stimuli, ovulation, and the progesterone receptor (PR) in mediating such behavioral effects. We found that copulatory stimuli were not necessary, and that ovulation alone was sufficient, as these behavioral changes were replicated in unmated females by intravenous administration of human chorionic gonadotropin (hCG). The post-mating administration (s.c.) of 5 μg/day estradiol benzoate (EB), prevented the decline in chinning and receptivity. A lower dose of EB (1 μg/day) had no effect, nor did the antiprogestin RU486 (20 mg, s.c., administered 3 h before mating). However, the combination of a single pre-mating administration of RU486 plus the post-mating administration of 1 μg/day EB completely blocked the decline in estrous behavior. We propose that PR activation around the time of mating and a post-mating decline in ovarian estradiol secretion and/or estradiol responsiveness act in parallel to terminate estrus in this species.  相似文献   

15.
The present study tested whether the display of paced mating behavior in female rats over four weekly tests is affected by sexual experience and whether test parameters, i.e., ending the test based on time or number of stimulations received, influence behavioral changes. In Experiment 1A rats with nonpaced sexual experience returned to the male more quickly overall compared to sexually naïve rats in a 30-min test of paced mating behavior. In Experiment 1B, rats received four weekly 30-min tests with one, different, male rat partner each week. Over the four tests, rats returned to the male significantly more quickly after intromissions, but significantly more slowly after ejaculations. Experiment 2A tested whether sexual experience would influence paced mating behavior in tests with a 15-intromission end criterion and the male replaced after ejaculation. Rats tested weekly under 15-intromission test conditions returned to the male significantly more quickly after intromissions, but no behavioral change was observed after ejaculations. When those same rats were given a 30-min test of paced mating behavior (Experiment 2B), they returned to the male significantly more slowly after ejaculations. Collectively, these data show that sexual experience influences the display of paced mating behavior in female rats and that the test parameters interact with sexual experience to influence the nature of the changes. Sexual experience may facilitate behaviors that promote reproductive success in female rats.  相似文献   

16.
Lesion studies were carried out to reveal neural mechanisms controlling a characteristic mating behavior, referred to as ‘mating dance’ in a maleBombyx mori which appears in reaction to the sex pheromone of the conspecific female. The experiments revealed 2 essential neural mechanisms involved in the mating dance. One is a flight motor system in the thorax, which organizes the wing vibration representing the mating dance. The other, a dance command element, is in the head ganglia. Once activated by the female sex pheromone, the latter can maintain its excitation for several minutes without additional stimulation. This long-lasting neuronal excitation was suggested to descend via cervical connectives to the thoracic ganglia and activate the flight motor system into operation.  相似文献   

17.
The objective of this study was to compare measures of general activity and sexual behavior for various genotypes within a strain of Drosophila melanogaster, which had known differences in mating speed. Three inbred lines of D. melanogaster differed significantly in mating speed when tested in female-choice and in single-pair experiments. Analyses of locomotor activity and sexual activity of females and males revealed no significant differences between the inbred lines. An analysis of the interplay between female and male courtship behaviors enabled the examination of signal-response differences between the inbred lines. The inbred lines with intermediate and slow mean mating speed showed a decreased number of significant transitions between female and male behavioral responses. This decrease was more severe in the slow mating line. Further, the intermediate- and slow-mating females and males displayed courtship responses toward signals of the opposite sex that were different from those of the fastmating line. Models of the relationship between behavioral activity and mating speed in Drosophila are discussed and a different explanation for variation in mating speed among the three inbred lines is considered.  相似文献   

18.
Experiments in which avian embryos are treated with sex steroidsor steroid antagonists suggest that sexual differentiation ofreproductive behavior (and thus differentiation of the brainmechanisms for such behavior) is controlled by steroids producedby the embryonic gonads. In chickens and Japanese quail, maleshatched from eggs treated with estradiol or testosterone duringincubation are feminized (demasculinized); they fail to exhibitmasculine sexual behavior as adults, and no longer are behaviorallydistinguishable from females. Some evidence suggests that testosteronemay mimic the feminizing action of estradiol by being convertedto an estrogen in the embryonic brain. Genetic female quailexposed to an antiestrogen during embryonic development aremasculinized; they exhibit an increased ability to display themasculine copulatory pattern. Thus the behavior of these speciesis feminized by embryonic exposure to sex steroids, the anhormonal(neutral) sex for behavioral differentiation appears to be themale, and females appear to result from estrogen produced bythe embryonic ovaries. In contrast, sex steroid treatment ofmammals early in development masculinizes behavior, the femaleis the neutral sex, and males result from fetal androgen secretion.These opposite patterns of psychosexual differentiation in birdsand mammals are correlated with a major difference between theavian and mammalian sex-determining mechanism. Implicationsfor other vertebrates are discussed.  相似文献   

19.
Sex steroids can both modulate and be modulated by behavior, and their actions are mediated by complex interactions among multiple hormone sources and targets. While gonadal steroids delivered via circulation can affect behavior, changes in local brain steroid synthesis also can modulate behavior. The relative steroid load across different tissues and the association of these levels with rates of behavior have not been well studied. The bluebanded goby (Lythrypnus dalli) is a sex changing fish in which social status determines sexual phenotype. We examined changes in steroid levels in brain, gonad and body muscle at either 24 hours or 6 days after social induction of protogynous sex change, and from individuals in stable social groups not undergoing sex change. For each tissue, we measured levels of estradiol (E2), testosterone (T) and 11-ketotestosterone (KT). Females had more T than males in the gonads, and more E2 in all tissues but there was no sex difference in KT. For both sexes, E2 was higher in the gonad than in other tissues while androgens were higher in the brain. During sex change, brain T levels dropped while brain KT increased, and brain E2 levels did not change. We found a positive relationship between androgens and aggression in the most dominant females but only when the male was removed from the social group. The results demonstrate that steroid levels are responsive to changes in the social environment, and that their concentrations vary in different tissues. Also, we suggest that rapid changes in brain androgen levels might be important in inducing behavioral and/or morphological changes associated with protogynous sex change.  相似文献   

20.
Physical strength and physical attractiveness are both hypothesized as indicators of overall phenotypic condition in humans. Strategic Pluralism Theory (Gangestad & Simpson, 2000) predicts that men’s orientation toward uncommitted mating is facultatively calibrated (i.e. contingently adjusted over ontogeny) in response to condition-dependent physical features, such as strength and attractiveness. Herein, we suggest that previous research bearing on this hypothesis has been limited because (a) researchers have often neglected to distinguish between mating orientations and past sexual behavior and (b) sample sizes have not always been large enough to reliably detect correlations of moderate magnitude. To address these issues and extend previous findings, we present aggregated data from three independent samples of young adults that permit us to examine multiple measures of physical strength and attractiveness in relation to uncommitted mating orientation, committed mating orientation, and past sexual behavior. As predicted, meta-analyses across samples demonstrated that strength and attractiveness were positively correlated with men’s (but not women’s) uncommitted mating orientation (but not committed mating orientation). In addition, strength (in men only) and attractiveness (in both sexes) positively predicted participants’ number of past sex partners. Moreover, path analyses demonstrated that the association of men’s physical features with their number of sex partners was mediated via uncommitted mating orientation. These results (a) provide the most extensive support to date for the hypothesis that men’s uncommitted mating orientation is calibrated to condition-dependent features and (b) clarify the sex-specific functional links among physical features, mating orientations and sexual behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号