首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly isolated bacterium, identified as Bacillus subtilis 65, was found to produce raw-starch-digesting alpha-amylase. The electrophoretically homogeneous preparation of enzyme (molecular weight, 68,000) digested and solubilized raw corn starch to glucose and maltose with small amounts of maltooligosaccharides ranging from maltotriose to maltoheptaose. This enzyme was different from other amylases and could digest raw potato starch almost as fast as it could corn starch, but it showed no adsorbability onto any kind of raw starch at any pH. The mixed preparation with Endomycopsis glucoamylase synergistically digested raw potato starch to glucose at 30 degrees C. The raw-potato-starch-digesting alpha-amylase showed strong digestibility to small substrates, which hydrolyzed maltotriose to maltose and glucose, and hydrolyzed p-nitrophenyl maltoside to p-nitrophenol and maltose, which is different from the capability of bacterial liquefying alpha-amylase.  相似文献   

2.
海洋环境来源的淀粉酶AmyP对生玉米 淀粉的降解特性   总被引:1,自引:0,他引:1  
来自海洋宏基因组文库的 α-淀粉酶(AmyP)属于最新建立的糖苷水解酶亚家族GH1337。AmyP 是一个生淀粉降解酶,能有效降解玉米生淀粉。在最适反应条件 pH 7.5和 40 °C 下,生玉米淀粉的比活达到 39.6 ± 1.4 U/mg。酶解反应动力学显示 AmyP 可以非常快速的降解生玉米淀粉。对 1%的生玉米淀粉仅需要 30 min;4%和 8%的生玉米淀粉只需 3 h。DTT 可以显著提高 AmyP 对生玉米淀粉的降解活性,1% DTT 促使活性增加 1倍。根据电镜观察和产物分析,认为 AmyP 是以内腐蚀的模式降解生玉米淀粉颗粒,释放出葡萄糖、麦芽糖和麦芽三糖作为终产物。  相似文献   

3.
A newly isolated bacterium, identified as Bacillus subtilis 65, was found to produce raw-starch-digesting α-amylase. The electrophoretically homogeneous preparation of enzyme (molecular weight, 68,000) digested and solubilized raw corn starch to glucose and maltose with small amounts of maltooligosaccharides ranging from maltotriose to maltoheptaose. This enzyme was different from other amylases and could digest raw potato starch almost as fast as it could corn starch, but it showed no adsorbability onto any kind of raw starch at any pH. The mixed preparation with Endomycopsis glucoamylase synergistically digested raw potato starch to glucose at 30°C. The raw-potato-starch-digesting α-amylase showed strong digestibility to small substrates, which hydrolyzed maltotriose to maltose and glucose, and hydrolyzed p-nitrophenyl maltoside to p-nitrophenol and maltose, which is different from the capability of bacterial liquefying α-amylase.  相似文献   

4.
The amylase ofBacillus sp IMD 370 is the first report of an alkaline amylase with the ability to digest raw starch. The amylase could degrade raw corn and rice starches more effectively than raw potato starch. It showed no adsorb-ability to any type of raw starch at any pH value tested. The enzyme digested raw corn starch to glucose, maltose, maltotriose and maltotetraose. The maximum pH for raw starch hydrolysis was pH 8.0 compared to pH 10.0 for soluble starch hydrolysis. The metal chelator, ethylenediaminetetraacetic acid, strongly inhibited raw starch-digestion and its effect was reversed by the addition of divalent cations. Degradation of raw starch was stimulated six-fold in the presence of -cyclodextrin (17.5 mM).  相似文献   

5.
A debranching enzyme was extracted from the endosperm of germinating rice seeds and purified through three steps, namely cyclohexaamylose-coupled Sepharose 6B, Ultrogel AcA-44 and Bio-Gel P-150 column chromatography. This disc-electrophoretically homogeneous enzyme showed a specific activity of 43 units/mg of protein (30°C) with a pH optimum of 5.5. The isoelectric point was 4.9, unlike that (pI 3.5) of debranching enzyme of ungerminated rice seeds. Our enzyme hydrolyzed pullulan rapidly, and glutinous rice starch and waxy corn starch moderately. The enzyme was also able to act on phytoglycogen and glycogen unlike debranching enzymes originating in some plants.  相似文献   

6.
A fungus, Fusarium verticillioides (NRRL 26518), was isolated by screening soil samples using corn fiber xylan as carbon source. The extracellular xylanase from this fungal strain was purified to apparent homogeneity from the culture supernatant by ultrafiltration using a 30,000 cut-off membrane, octyl-Sepharose chromatography and Bio gel A-0.5 m gel filtration. The purified xylanase (specific activity 492 U/mg protein; MW 24,000; pI 8.6) displayed an optimum temperature at 50 degrees C and optimum pH at 5.5, a pH stability range from 4.0 to 9.5 and thermal stability up to 50 degrees C. It hydrolyzed a variety of xylan substrates mainly to xylobiose and higher short-chain xylooligosaccharides. No xylose was formed. The enzyme did not require metal ions for activity and stability.  相似文献   

7.
The α-amylase (AmyP) from a marine metagenomic library belongs to the recently classified glycoside hydrolase subfamily GH13_37. The degradation abilities of AmyP on a broad range of raw starch granules were examined at 40 °C and pH 7.5. It was found that AmyP is a raw starch-degrading enzyme, exhibiting a unique and remarkable ability to preferentially and very rapidly digest raw rice starch. The specific activity of raw rice starch was reached 118.5?±?0.6 Umg(-1), which was much higher than that of other raw starches. The final hydrolysis degrees were obtained in 4 h for 1 % raw rice starch and 1 h for 8 % concentration, indicating a very rapid speed of hydrolysis. The presence of a starch residue resistant was the main limiting factor for complete hydrolysis, although end product inhibition also existed, especially at high starch concentrations. AmyP randomly attacks unique or susceptible sites on raw rice starch granules, and releases glucose, maltose, and maltotriose as end products. This is the first biochemical characterization of the raw starch-degrading ability of an α-amylase of family GH13_37. The specific ability towards raw rice starch has never been described before, and this makes AmyP a promising candidate for use as a novel enzyme in rice starch processing.  相似文献   

8.
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N'-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher alpha-amylaseactivity than the parent strain under submerged culture at 30 degrees C for 24 h. About 70% of the total alpha-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable alpha-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable alpha-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal alpha-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.  相似文献   

9.
Aspergillus foetidus ATCC 10254 was selected from nine starch-utilizing microorganisms for its high amylolytic activity. This mould produced high levels of extracellular alpha-amylase in rice starch medium and degraded the available starch efficiently. Optimal conditions for enzyme production on 2.0% rice medium included 28 degrees C, initial pH of 6.6, and supplementations with 0.02% NaNO2, 0.08% KH2PO4, and 0.08% corn steep liquor. Eleven-fold purification of the enzyme was obtained after ammonium sulphate and ethanol precipitations from spent medium. The molecular weight was estimated at 41 500. Optimum pH and temperature for enzyme activity were 5.0 and 45 degrees C. Michaelis-Menten constants were 1.14 mg/ml on amylopectin, 2.19 mg/ml on soluble starch and 7.65 mg/ml on amylose. Amylose produced substrate inhibition while glucose or maltose did not inhibit the enzyme. This alpha-amylase may be used as a saccharifying enzyme for rice starch. Aspergillus foetidus ATCC 10254 also presents a potential for treatment of starch-containing waste waters.  相似文献   

10.
Conditions for the preparation of carboxymethyl derivatives of corn and amaranth starch were compared. The two starches differed considerably with respect to the optimum conditions such as temperature, pH, time, concentration of sodium monochloroacetate, and starch:liquor ratio. In both cases, isopropyl alcohol was the solvent of choice. Multistage carboxylation was also carried out. Amaranth starch differs from corn starch in two respects. It is waxy in nature and also has a small granule size of 1–2 μm. However, comparison with rice starch, having a granule size of 1–2 μm and potato starch, having a similar amylose content as corn starch showed no correlation between any of these parameters.  相似文献   

11.
A Bacillus subtilis AX20 from soil with ability to produce extracellular alpha-amylases was isolated. The characterization of microorganism was performed by biochemical tests as well as 16S rDNA sequencing. Maximum amylase activity (38 U/ml) was obtained at stationery phase when the culture was grown at 37 degrees C. The enzyme was purified to homogeneity with an overall recovery of 24.2% and specific activity of 4133 U/mg. The native protein showed a molecular mass of 149 kDa composed of a homodimer of 78 kDa polypeptide by SDS-PAGE. The optimum pH and temperature of the amylase were 6 and 55 degrees C, respectively. The enzyme was inhibited by Hg(2+), Ag(2+), and Cu(2+) and it did not show an obligate requirement of metal ions. The enzyme was not inhibited by EDTA or EGTA, suggesting that this enzyme is not a metalloenzyme. The end products of corn starch and soluble starch were glucose (70-75%) and maltose (20-25%). Rapid reduction of blue value and the end products suggest an endo mode of action for the amylase. The purified amylase shows interesting properties useful for industrial applications.  相似文献   

12.
Maximum activity of the amylase ofBacillus alvei was attained after growth of the organism on sorghum starch. Rice, corn, yam, cassava and potato starch gave high enzyme activities as did soluble starch. Glucose, maltose and glycerol were less effective. Optimum conditions for both growth and enzyme production were pH 6.8 at 40°C.  相似文献   

13.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 micrometers in diameter. The new isolate grew at temperatures between 60 and 95 degrees C (optimum, 85 degrees C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120 degrees C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100 degrees C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110 degrees C. The enzyme formed mainly alpha-cyclodextrin with small amounts of beta- and gamma-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

14.
Amyloglucosidase was covalently bound to collagen sheets by a previously described method. The time of acidic methylation (first step of the collagen activation process) was important to obtain a good enzymatic surfacic activity. Homogeneity of the coupling procedure on the surface of collagen films was shown. Some properties of free enzyme were not affected after grafting; optimum pH and temperature, activation energy, and Km for maltose. Heat stability of the bound enzyme was slightly better; Km for soluble starch increased fivefold. In contrast, the maximal velocity in the presence of soluble starch remained four times that of maltose hydrolysis. Amyloglucosidase collagen membranes were used in a helicoidal reactor to produce glucose from maltose or soluble starch solutions. Tracer studies have shown that the helicoidal reactor behaved as a CSTR. The influence of maltose concentration and flow rate on conversion was studied and confirmed the absence of diffusional limitations for maltose. Recycling of concentrated solutions of maltose and soluble starch indicated strong diffusional restrictions for soluble starch. The catalytic support kept all its activity for 18 days continuous operation at 40 degrees C and 80% after 17 months storage at 4 degrees C.  相似文献   

15.
Xu X  Fang J  Wang W  Guo J  Chen P  Cheng J  Shen Z 《Transgenic research》2008,17(4):645-650
An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction.  相似文献   

16.
Iodine has been used as an effective tool for studying both the structure and composition of dispersed starch and starch granules. In addition to being employed to assess relative amylose contents for starch samples, it has been used to look at the molecular mobility of the glucose polymers within intact starch granules based on exposure to iodine vapor equilibrated at different water activities. Starches of different botanical origin including corn, high amylose corn, waxy corn, potato, waxy potato, tapioca, wheat, rice, waxy rice, chick pea and mung bean were equilibrated to 0.33, 0.75, 0.97 water activities, exposed to iodine vapor and then absorbance spectra and LAB color were determined. In addition, a new iodine quantification method sensitive to <0.1% iodine (w/w) was employed to measure bound iodine within intact granular starch. Amylose content, particle size distribution of granules, and the density of the starch were also determined to explore whether high levels of long linear glucose chains and the surface area-to-volume ratio were important factors relating to the granular iodine binding. Results showed, in all cases, starches complexed more iodine as water content increased and waxy starches bound less iodine than their normal starch counterparts. However, much more bound iodine could be measured chemically with waxy starches than was expected based on colorimetric determination. Surface area appeared to be a factor as smaller rice and waxy rice starch granules complexed more iodine, while the larger potato and waxy potato granules complexed less than would be expected based on measured amylose contents. Corn, high amylose corn, and wheat, known to have starch granules with extensive surface pores, bound higher levels of iodine suggesting pores and channels may be an important factor giving iodine vapor greater access to bind within the granules. Exposing iodine vapor to moisture-equilibrated native starches is an effective tool to explore starch granule architecture.  相似文献   

17.
Production of an amylase-degrading raw starch by Gibberella pulicaris   总被引:1,自引:0,他引:1  
An endophytic fungus, Gibberella pulicaris, produced an amylase which degraded raw starches from cereals and other crops including raw potato, sago, tapioca, corn, wheat and rice starch. In each case, glucose was the main product. Among the raw starches used, raw potato starch gave the highest enzyme activity (85 units mg–1 protein) and raw wheat starch the lowest (49 units mg–1 protein). The highest amylase production (260 units mg–1 protein) was achieved when the concentration of raw potato starch was increased to 60 g l–1. Optimum hydrolysis was at 40°C and pH 5.5.  相似文献   

18.
The action of pancreatic alpha-amylase (EC 3.2.1.1) on various starches has been studied in order to achieve better understanding of how starch structural properties influence enzyme kinetic parameters. Such studies are important in seeking explanations for the wide differences reported in postprandial glycaemic and insulinaemic indices associated with different starchy foodstuffs. Using starches from a number of different sources, in both native and gelatinised forms, as substrates for porcine alpha-amylase, we showed by enzyme kinetic studies that adsorption of amylase to starch is of kinetic importance in the reaction mechanism, so that the relationship between reaction velocity and enzyme concentration [E0] is logarithmic and described by the Freundlich equation. Estimations of catalytic efficiencies were derived from measurements of kcat/Km performed with constant enzyme concentration so that comparisons between different starches were not complicated by the logarithmic relationship between E0 and reaction velocity. Such studies reveal that native starches from normal and waxy rice are slightly better substrates than those from wheat and potato. After gelatinisation at 100 degrees C, kcat/Km values increased by 13-fold (waxy rice) to 239-fold (potato). Phosphate present in potato starch may aid the swelling process during heating of suspensions; this seems to produce a very favourable substrate for the enzyme. Investigation of pre-heat treatment effects on wheat starch shows that the relationship between treatment and kcat/Km is not a simple one. The value of kcat/Km rises to reach a maximum at a pre-treatment temperature of 75 degrees C and then falls sharply if the treatment is conducted at higher temperatures. It is known that amylose is leached from starch granules during heating and dissolves. On cooling, the dissolved starch is likely to retrograde and become resistant to amylolysis. Thus the catalytic efficiency tends to fall. In addition, we find that the catalytic efficiency on the different starches varies inversely with their solubility and we interpret this finding on the assumption that the greater the solubility, the greater is the likelihood of retrogradation. We conclude that although alpha-amylase is present in high activity in digestive fluid, the enzymic hydrolysis of starch may be a limiting factor in carbohydrate digestion because of factors related to the physico-chemical properties of starchy foods.  相似文献   

19.
A maltotetraose- and maltotriose-producing amylase which is stable at alkaline pHs and high temperatures was detected in the culture filtrate of a strain of Chloroflexus aurantiacus J-10-F1, a thermophilic, green, photosynthetic bacterium. The enzyme was purified to homogeneity, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by means of ultrafiltration, ammonium sulfate fractionation, and DEAE-cellulose, hydroxyapatite, and high-performance liquid chromatographies. The molecular mass of the purified enzyme was estimated to be about 210,000 Da. The isoelectric point of the enzyme was estimated to be 6.24 by polyacrylamide gel electrofocusing. The amylase was stable up to 55°C and at alkaline pHs of up to 12.0. The optimum pH and temperature of the enzyme activity were 7.5 and 71°C, respectively. Metal ions such as Hg2+, Zn2+, Cu2+, Mn2+, and Ni2+ strongly inhibited the enzyme activity. The enzyme activity was reactivated specifically by Ca2+ after the enzyme was treated with 1 mM EDTA. This enzyme could digest various kinds of raw-starch granules from corn, cassava, and potato. Both maltotetraose and maltotriose were formed as the main enzymatic products from soluble starch.  相似文献   

20.
Microbacterium aurum strain B8.A was isolated from the sludge of a potato starch-processing factory on the basis of its ability to use granular starch as carbon- and energy source. Extracellular enzymes hydrolyzing granular starch were detected in the growth medium of M. aurum B8.A, while the type strain M. aurum DSMZ 8600 produced very little amylase activity, and hence was unable to degrade granular starch. The strain B8.A extracellular enzyme fraction degraded wheat, tapioca and potato starch at 37 °C, well below the gelatinization temperature of these starches. Starch granules of potato were hydrolyzed more slowly than of wheat and tapioca, probably due to structural differences and/or surface area effects. Partial hydrolysis of starch granules by extracellular enzymes of strain B8.A resulted in large holes of irregular sizes in case of wheat and tapioca and many smaller pores of relatively homogeneous size in case of potato. The strain B8.A extracellular amylolytic system produced mainly maltotriose and maltose from both granular and soluble starch substrates; also, larger maltooligosaccharides were formed after growth of strain B8.A in rich medium. Zymogram analysis confirmed that a different set of amylolytic enzymes was present depending on the growth conditions of M. aurum B8.A. Some of these enzymes could be partly purified by binding to starch granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号