共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of altering oligosaccharide structures at sites 184 and 448 of tissue plasminogen activator (tPA) has been examined. Alteration to high-mannose forms at sites 184 and 448 was accomplished by the growth of cells in the presence of deoxymannojirimycin (dMM). Modification to neutral, unsialylated forms at these sites was achieved by neuraminidase treatment of control preparations of tPA. Oligosaccharides at site 117 were not markedly affected by either treatment because structures at this site are high-mannose and not sialylated in untreated preparations. The effect on enzymatic activity and on a related property, lysine affinity, was determined. dMM treatment was found to increase both the lysine affinity and catalytic activity of tPA. Neuraminidase treatment increased enzyme activity, but was without effect on affinity for lysine. To evaluate the effects of alterations at site 184 and site 448, the catalytic activity and lysine affinity of type I and type II tPA were monitored individually. In the dMM-treated sample, type I tPA (with sugars at sites 117, 184 and 448) was found to have 2- to 3-fold increased catalytic activity and an affinity for lysine which was greater than that of type I from untreated preparations, but less than that of control type II tPA (containing sugar only at sites 117 and 448). In neuraminidase-treated type I, catalytic activity was also enhanced but lysine affinity remained unchanged. Type II from dMM- and neuraminidase-treated preparations had catalytic activity that was increased approximately 1.5-fold compared to untreated controls, whereas affinity for lysine was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
In order to evaluate the importance of the carbohydrate moiety of human tissue plasminogen activator (TPA), human melanoma (Bowes) cells were treated with a glycosylation inhibitor, tunicamycin (TM), and cellular fractions were assayed for fibrinolytic activity. Where glycosylation was inhibited by 90% and protein synthesis by 30%, TPA specific activity measured by fibrinolytic assays decreased 6-10-fold in the tissue culture medium and cell cytosol with a concomitant 2-fold increase in the 100000g microsomal pellet. In addition, TPA purified to apparent homogeneity was treated with endo-beta-N-acetylglucosaminidase H (Endo-H), producing a fraction that in contrast to native TPA did not adsorb to concanavalin A-Sepharose (Con A-Sepharose). This fraction represented TPA from which 85-90% of N-linked carbohydrate residues had been removed. Native TPA effectively activated plasminogen in the presence of fibrin (Km = 1 microM, kcat = 0.09 s-1) whereas saturation of the enzyme was not achieved at 100 microM plasminogen in the absence of fibrin. Glycosidase-treated and native TPA activated plasminogen at identical high rates in the presence and at identical negligible rates in the absence of fibrin. These studies indicate that the inhibition of glycosylation of TPA results in the inhibition of secretion of the molecule as has been observed for some other glycoproteins. The enzymatic removal of N-linked carbohydrate from purified TPA does not change its unique fibrin-directed properties. 相似文献
3.
B A Chibber S Urano F J Castellino 《International journal of peptide and protein research》1990,35(1):73-80
Solid phase synthesis of the hexapeptide, GPRVVE, which represents the amino terminal six amino acids of the alpha-chain of human fibrin, yielded a product that contained a modified glutamic acid. The nature of the modification was established as the Friedel-Crafts acylation product of the peptide and anisole, the latter reagent employed in the HF deblocking step. The anisoylated peptide selectively enhanced the activation rate of native [Glu1]plasminogen by recombinant tissue plasminogen activator, accelerated clot lysis, and retarded the polymerization of nascent fibrin. 相似文献
4.
5.
Ahmed W Malik M Saeed I Khan AA Sadeque A Kaleem U Ahmed N Ajmal M Azam M Qamar R 《Molecular biology reports》2011,38(4):2541-2548
A case–control association study on 229 Myocardial Infarction (MI) patients and 217 healthy controls was carried out to determine
the role of tissue-plasminogen activator (t-PA) (Alu-repeat insertion (I)/deletion (D)) and plasminogen activator inhibitor
(PAI-1) (4G/5G insertion/deletion) polymorphisms with MI in the Pakistani population. In MI patients the genotype distribution
of the PAI-1 gene was not found to be different when compared with the unaffected controls (P > 0.05, χ2 = 1.03). The risk allele 4G was also not associated with MI (P > 0.05, χ2 = 0.46, odds ratio (OR) = 1.1 (95% confidence interval (CI) = 0.84–1.43), P > 0.05). Similarly, the genotype frequencies of t-PA I/I, I/D and D/D were not different from the unaffected controls (P > 0.05, χ2 = 1.60), and the risk allele “I” was not found to be associated with MI (P > 0.05, χ2 = 1.35, OR = 0.86 (95% CI = 0.66–1.11), P > 0.05). However, when the data were distributed along the lines of gender a significant association of the 4G/4G PAI-1 genotype
was observed with only the female MI patients (P < 0.05, z-test = 2.21). When the combined genotypes of both the polymorphisms were analyzed, a significant association of
MI was observed with the homozygous DD/4G4G genotype (P < 0.01, z-test = 2.61), which was specifically because of the female samples (P = 0.01, z-test = 2.53). In addition smoking (P < 0.001, χ2 = 13.52, OR = 3.45 (95% CI = 1.77–6.94)), diabetes (P < 0.001, χ2 = 22.45, OR = 8.89 (95% CI = 2.96–29.95)), hypertension (OR = 7.76 (95% CI = 2.88–22.68), P < 0.001) family history (P < 0.001, χ2 = 13.72, OR = 3.7 (95% CI = 1.71–8.18)) and lower HDL levels (P < 0.05) were found to be significantly associated with the disease. In conclusion the PAI-1 gene polymorphism was found to
have a gender specific role in the female MI patients. 相似文献
6.
Tissue plasminogen activator was treated with Sepharose-bound trypsin or chymotrypsin. Trypsin rapidly converted the one-chain activator to the two-chain form. This caused a marked increase in the amidolytic activity, while plasminogen activation initially increased but then decreased again. SDS/polyacrylamide gel electrophoresis in combination with [3H]diisopropylfluorophosphate active-site labeling revealed that after the conversion to the two-chain activator a minor cleavage occurred in the B chain, while the A chain was substantially degraded. Chymotrypsin caused a marked decrease in both amidolytic activity and plasminogen activation. SDS/polyacrylamide gel electrophoresis under reducing conditions revealed that two pairs of new bands had appeared, with Mr or about 50,000/52,000 and 17,000/20,000 respectively. N-terminal sequence analysis identified cleavage sites at peptide bonds 420-421 and 423-424. These bonds are located in a region of the activator which is homologues to the segments of trypsin and chymotrypsin, where autocatalytic cleavages occur during their activations. However, treatment of two-chain activator with chymotrypsin had markedly less effect on plasminogen activation and amidolytic activity. By treatment of samples of chymotrypsin-digested one-chain activator with plasmin, amidolytic activity could be largely restored. Thus, chymotrypsin may, by cleaving bonds 420-421 and 423-424, convert the active one-chain activator into an 'inactive' zymogen, which is again 'activated' by plasmin cleavage. 相似文献
7.
Plasminogen activator inhibitor-1 (PAI-1) rapidly inactivates tissue plasminogen activator (tPA). After initial binding and cleavage of the reactive-centre loop of PAI-1, this complex is believed to undergo a major rearrangement. Using surface plasmon resonance and SDS-PAGE, we have studied the influence of a panel of monoclonal antibodies on the reaction leading to the final covalent complex. On the basis of these data, we suggest the mechanisms for the action of different classes of inhibitory antibodies. We propose that the antibodies which convert PAI-1 into a substrate for tPA do this by means of preventing the conversion of the initial PAI-1/tPA complex into the final complex by sterical intervention. Moreover, the localisation of the binding epitopes on free PAI-1, as well as on the PAI-1/tPA complex, suggests that tPA in the final complex cannot be located near helices E and F, as has previously been proposed. 相似文献
8.
Recombinant tissue-type plasminogen activator (rt-PA) from cultures of a genetically manipulated Bowes melanoma cell line (TRBM6) was purified in batches of average volume 451 using an autoclavable, reusable, continuous chromatography system comprising zinc chelate-Sepharose CL4B and lysine-Sepharose CL4B. After eight successive purifications the rt-PA was ultrafiltered to yield a preparation containing 4.9 mg protein/ml and 2.7 X 10(6) IU/ml. Analysis by SDS-polyacrylamide gel electrophoresis followed by staining with Coomassie brilliant blue R250 showed major protein bands at Mr = 63,000 and 65,000; most of the material was in the 1-chain form. The potential usefulness of a simple, rapid continuous chromatography system that can be operated under aseptic conditions is discussed. 相似文献
9.
K A Hajjar 《The Journal of biological chemistry》1991,266(32):21962-21970
Human endothelial cells (EC) assemble plasmin-generating proteins on their surface. We have previously identified an EC membrane protein (Mr approximately 40,000) which specifically binds tissue plasminogen activator (t-PA) but not urokinase (Hajjar, K.A., and Hamel, N. M. (1990) J. Biol. Chem. 265, 2908-2916). In the present study, t-PA receptor protein (t-PA-R) was purified to apparent homogeneity from a detergent extract of human placental tissue by diisopropyl fluorophosphate-t-PA affinity chromatography and preparative gel electrophoresis. In a solid phase binding assay wells coated with t-PA-R bound both 125I-t-PA and 125I-Lys-plasminogen (PLG), but not 125I-urokinase in a specific, reversible, and noncompetitive fashion. Binding of 125I-Lys-PLG, but not 125I-t-PA, to t-PA-R was 80% inhibited by a 20-100-fold molar excess of the PLG-like lipoprotein(a), or by the lysine analog, epsilon-aminocaproic acid (50 mM). A polyclonal anti-t-PA-R antibody inhibited 66 and 79% of the specific 125I-t-PA and 125I-Lys-PLG binding, respectively, to EC monolayers. Biosynthetically labeled 40-kDa protein coprecipitated with t-PA- or Lys-PLG-Sepharose beads, but not with unconjugated Sepharose. In a functional assay, t-PA associated with immobilized t-PA-R generated 6.4 times more plasmin than an equivalent amount of t-PA in the fluid phase. These results suggest that t-PA-R can bind both t-PA and Lys-PLG in a manner that mimics the EC surface. This protein may play a role in modulating plasmin generation on cell surfaces. 相似文献
10.
Dow MP Bakke LJ Cassar CA Peters MW Pursley JR Smith GW 《Biology of reproduction》2002,66(5):1413-1421
This study examined the effect of the preovulatory gonadotropin surge on the temporal and spatial regulation of tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), and uPA receptor (uPAR) mRNA expression and tPA, uPA, and plasmin activity in bovine preovulatory follicles and new corpora lutea collected at approximately 0, 6, 12, 18, 24, and 48 h after a GnRH-induced gonadotropin surge. Messenger RNAs for tPA, uPA, and uPAR were increased in a temporally specific fashion within 24 h of the gonadotropin surge. Localization of tPA mRNA was primarily to the granulosal layer, whereas both uPA and uPAR mRNAs were detected in both the granulosal and thecal layers and adjacent ovarian stroma. Activity for tPA was increased in follicular fluid and the preovulatory follicle apex and base within 12 h after the gonadotropin surge. The increase in tPA activity in the follicle base was transient, whereas the increased activity in the apex was maintained through the 24 h time point. Activity for uPA increased in the follicle apex and base within 12 h of the gonadotropin surge and remained elevated. Plasmin activity in follicular fluid also increased within 12 h after the preovulatory gonadotropin surge and was greatest at 24 h. Our results indicate that mRNA expression and enzyme activity for both tPA and uPA are increased in a temporally and spatially specific manner in bovine preovulatory follicles after exposure to a gonadotropin surge. Increased plasminogen activator and plasmin activity may be a contributing factor in the mechanisms of follicular rupture in cattle. 相似文献
11.
The human tissue plasminogen activator gene 总被引:28,自引:0,他引:28
12.
Actin has been found to bind to plasmin's kringle regions, thereby inhibiting its enzymatic activity in a noncompetitive manner. We, therefore, examined its effect upon the conversion of plasminogen to plasmin by tissue plasminogen activator. Actin stimulated plasmin generation from both Glu- and Lys-plasminogen, lowering the Km for activation of Glu-plasminogen into the low micromolar range. Accelerated plasmin generation did not occur in the presence of epsilon-amino caproic acid or if actin was exposed to acetic anhydride, an agent known to acetylate lysine residues. Actin binds to tissue plasminogen activator (t-Pa) (Kd = 0.55 microM), at least partially via lysine-binding sites. Actin's stimulation of plasmin generation from Glu-plasminogen was inhibited by the addition of aprotinin and was restored by the substitution of plasmin-treated actin, indicating the operation of a plasmin-dependent positive feedback mechanism. Native actin binds to Lys-plasminogen, and promotes its conversion to plasmin even in the presence of aprotinin, indicating that plasmin's cleavage of either actin or plasminogen leads to further plasmin generation. Plasmin-treated actin binds Glu-plasminogen and t-PA simultaneously, thereby raising the local concentration of t-PA and plasminogen. Together, but not separately, actin and t-PA prolong the thrombin time of plasma through the generation of plasmin and fibrinogen degradation products. Actin-stimulated plasmin generation may be responsible for some of the changes found in peripheral blood following tissue injury and sepsis. 相似文献
13.
C K?hne A Johnson S Tom D H Peers R L Gehant T A Hotaling D Brousseau T Ryll J A Fox S M Chamow P W Berman 《Journal of cellular biochemistry》1999,75(3):446-461
Strategies that prevent the attachment of N-linked carbohydrates to nascent glycoproteins often impair intracellular transport and secretion. In the present study, we describe a method to rescue the intracellular transport and secretion of glycoproteins mutagenized to delete N-linked glycosylation sites. Site-directed mutagenesis was used to delete N-linked glycosylation sites from a chimeric protein, TNFR-IgG1. Deletion of any of the three glycosylation sites in the TNFR portion of the molecule, alone or in combination, resulted in a moderate or near total blockade of TNFR-IgG1 intracellular transport and secretion. Pulse chase experiments suggested that the glycosylation site mutants accumulated in the endoplasmic reticulum (ER) and were inefficiently exported to the Golgi apparatus (GA). Replacement of the TNFR signal sequence with the signal/pro sequence of human tissue plasminogen activator (tPA) overcame the blockade to intracellular transport, and restored secretion to levels comparable to those achieved with the fully glycosylated molecule. Ligand binding studies suggested that the secreted glycosylation variants possessed binding characteristics similar to the fully glycosylated protein. This study demonstrates that N-terminal sequences of tPA are unexpectedly efficient in facilitating transport from the ER to the GA and suggests that these sequences contain a previously unrecognized structural element that promotes intracellular transport. 相似文献
14.
15.
Benassi MS Ponticelli F Azzoni E Gamberi G Pazzaglia L Chiechi A Conti A Spessotto P Scapolan M Pignotti E Bacchini P Picci P 《Histology and histopathology》2007,22(9):1017-1024
In recent years, classification of soft-tissue sarcomas (STS) has improved with cytogenetic analyses, but their clinical behavior is still not easily predictable. The aim of this study was to detect alterations in the urokinase-type plasminogen system, involved in tumor growth and invasion, by comparing mRNA levels of its components with those of paired normal tissues, and relating them with patient clinical course. Real-time PCR was performed on human STS cell lines and tissues from highly malignant STS, including leiomyosarcomas and malignant fibrous histiocytomas, to evaluate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of gene products was also performed. Median mRNA values of all genes studied were higher in tumors than in paired normal tissues. In agreement with data on STS cell lines, significant up-regulation for uPA and PAI-1 genes compared to reference values was seen. Moreover, different levels of expression were related to histotype and metastatic phenotype. There was accordance between uPA mRNA and protein expression, while immunodetection of PAI-1 product was weak and scattered. Clearly, the controversial role of PAI-1 protein requires further biological analyses, but evident involvement of uPA/PAI-1 gene overexpression in STS malignancy may highlight a molecular defect useful in discriminating STS high-risk patients. 相似文献
16.
The influence of diacylglycerols, which are physiological activators of protein kinase C, on the production of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) was studied in order to gain insight into the regulation of fibrinolysis by these cells. 1,2-dioctanoyl-sn-glycerol (diC8) stimulated tPA production in a dose- and time-dependent manner. The tPA antigen in cell supernatants increased from 0.9 ng/10(6) cells in unstimulated cells to 12.4 ng (10(6) cells after incubation with 400 microM diC8 for 24 hours. In contrast, PAI-1 production was not influenced by diC8, whereas phorbol 12-myristate 13-acetate (PMA) or thrombin stimulated both, tPA and PAI-1 production by HUVEC. Staurosporine and H7, which are inhibitors of protein kinase C, inhibited tPA synthesis by HUVEC. The degree of inhibition was dependent on the agonist used. While diC8-induced tPA production was inhibited to more than 80% by H7 (10 microM) and staurosporine (10 nM), higher doses of inhibitors were required to inhibit thrombin- and PMA-induced tPA production. Thrombin-induced PAI-1 production was inhibited to more than 80% by H7 (10 microM) and to about 50% by staurosporine, whereas PMA-induced PAI-1 production was not inhibited by staurosporine, and only to about 50% by higher doses of H7 (30 microM). These data suggest that activation of protein kinase C is a common intracellular trigger mechanism for the induction of tPA synthesis by HUVEC. Protein kinase C is most likely also involved in the regulation of PAI-1 synthesis by HUVEC. 相似文献
17.
18.
A M Vicari S Viganó D'Angelo S Testa G Comi G Galardi E Orsi A D'Angelo 《Hormones et métabolisme》1992,24(11):516-519
The fibrinolytic system was investigated in 38 patients (21 males and 17 females) affected by type 1 diabetes mellitus (18 free from complications, 10 with retinopathy, and 10 with autonomic neuropathy) and in 8 healthy controls. Two separate fibrinolysis-stimulating tests were done: standardized venous occlusion and 1-desamino-8-D-arginine vasopressin infusion. Plasma tissue plasminogen activator antigen and activity and plasma plasminogen activator inhibitor activity were measured. All the patients were in good metabolic control (mean HbA1c 7.4%, range 6.1-8.0%). No significant differences were observed either between the diabetic patients and the control subjects, nor among the subgroups of diabetic patients. The fibrinolytic system is probably not involved in type 1 diabetes mellitus. 相似文献
19.
A novel fusion protein expression plasmid that allows ready purification and subsequent facile release of the target molecule has been constructed and employed to express in Escherichia coli and purify the tissue plasminogen activator kringle 1 domain ([K1tPA] residues C92-C173). The resulting plasmid encodes the tight lysine-binding kringle (K)1 domain of human plasminogen ([K1HPg]) followed by a peptide (PfXa) containing a factor Xa-sensitive bond, downstream of which [K1tPA] was inserted. The recombinant (r) [K1HPg]PfXa[K1tPA] fusion polypeptide was purified from various cell fractions in one step by Sepharose-lysine affinity chromatography. After cleavage with fXa, the mixture was repassaged over Sepharose-lysine, whereupon the r-[K1tPA]-containing polypeptide passed unretarded through the column. A homogeneous preparation of this material was then obtained after a simple step employing fast protein liquid chromatography. The purified r-[K1tPA], which contained the amino acid sequence SNAS[K1tPA]S, provided an amino-terminal amino acid sequence, through at least 20 amino acid residues, that was identical to that predicted from the cDNA sequence. The molecular mass of r-SNAS[K1tPA]S, determined by electrospray mass spectrometry, was 9621.9 +/- 4.0 (expected molecular mass, 9623.65). 1H-NMR spectroscopy and thermal stability studies of r-SNAS[K1tPA]S revealed that the purified material was properly folded and similar to other isolated kringle domains. Additionally, employment of this methodology revealed that only a very weak interaction between epsilon-aminocaproic acid and the isolated r-[K1tPA] domain occurred. 相似文献
20.
B Arnljots J B Wieslander P Dougan L Salemark 《Plastic and reconstructive surgery》1992,90(2):281-288
In a blind, randomized study, two groups, each of seven rabbits, were treated with either a very low dose of human melanoma cell line-derived tissue-type plasminogen activator (t-PA) or isotonic saline. t-PA (0.067 mg/kg of body weight) was administered intraaortically, 20 percent being given as a 30-second "bolus" infusion just prior to the reperfusion of intimectomized central ear arteries and the rest as a continuous infusion during the next 2 hours. Arteriotomic bleeding times, accumulations of 32P-labeled platelets, patency, and sizes of thrombus deposits 2 hours after reperfusion were recorded. To confirm the presence of tissue plasminogen activator in plasma, fibrin-plate lysis assays of arterial plasma were performed immediately before and 1/2 hour and 2 hours after starting drug infusion. Arteriotomic bleeding times were similar in both groups. Transient "oozing" from wound edges occurred in 40 percent of rabbits treated with tissue plasminogen activator. Patency was significantly increased and thrombus deposits were smaller in the tissue plasminogen activator group. Plasma from animals treated with tissue plasminogen activator caused massive lysis of fibrin plates, whereas plasma from control animals caused little or no lysis. Platelet accumulations were very similar in both groups, indicating that occlusive thrombi mainly consisted of other elements than platelets (e.g., fibrin and red cells). Scanning electron microscopy showed normally adhering and aggregating platelets in both groups. This study shows that mild fibrinolytic stimulation with tissue plasminogen activator significantly improves patency in severely traumatized small-caliber arteries and indicates that such treatment may be one approach to prevent thrombosis at microvascular anastomotic sites. 相似文献