首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yeom SJ  Kim YS  Lim YR  Jeong KW  Lee JY  Kim Y  Oh DK 《Biochimie》2011,93(10):1659-1667
Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn2+ that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of Km and dramatic decrease of kcat, and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity.  相似文献   

2.
Peptidyl-tRNA hydrolase (Pth) cleaves the ester bond between the peptide and the tRNA of peptidyl-tRNA molecules, which are the products of defective translation, to recycle the tRNA for further rounds of protein synthesis. Pth is ubiquitous in nature, and its activity is essential for bacterial viability. Here, we have determined the crystal structure of Pth from Thermus thermophilus (TtPth) at 1.00 Å resolution. This is the first structure of a Pth from a thermophilic bacterium and the highest resolution Pth structure reported so far. The present atomic resolution data enabled the calculation of anisotropic displacement parameters for all atoms, which revealed the directionality of the fluctuations of key regions for the substrate recognition. Comparisons between TtPth and mesophilic bacterial Pths revealed that their structures are similar overall. However, the structures of the N- and C-terminal, loop-helix α4, and helix α6 regions are different. In addition, the helix α1 to strand β4 region of TtPth is remarkably different from those of the mesophilic bacterial Pths, because this region is 9 or 10 amino acid residues shorter than those of the mesophilic bacterial Pths. This shortening seems to contribute to the thermostability of TtPth. To further understand the determinants for the thermostability of TtPth, we compared various structural factors of TtPth with those of mesophilic bacterial Pths. The data suggest that the decreases in accessible surface area and thermolabile amino acid residues, and the increases in ion pairs, hydrogen bonds, and proline residues cooperatively contribute to the thermostability of TtPth.  相似文献   

3.
High-resolution crystal structure of cytochrome P450cam   总被引:27,自引:0,他引:27  
The crystal structure of Pseudomonas putida cytochrome P450cam with its substrate, camphor, bound has been refined to R = 0.19 at a normal resolution of 1.63 A. While the 1.63 A model confirms our initial analysis based on the 2.6 A model, the higher resolution structure has revealed important new details. These include a more precise assignment of sequence to secondary structure, the identification of three cis-proline residues, and a more detailed picture of substrate-protein interactions. In addition, 204 ordered solvent molecules have been found, one of which appears to be a cation. The cation stabilizes an unfavorable polypeptide conformation involved in forming part of the active site pocket, suggesting that the cation may be the metal ion binding site associated with the well-known ability of metal ions to enhance formation of the enzyme-substrate complex. Another unusual polypeptide conformation forms the proposed oxygen-binding pocket. A localized distortion and widening of the distal helix provides a pocket for molecular oxygen. An intricate system of side-chain to backbone hydrogen bonds aids in stabilizing the required local disruption in helical geometry. Sequence homologies strongly suggest a common oxygen-binding pocket in all P450 species. Further sequence comparisons between P450 species indicate common three-dimensional structures with changes focused in a region of the molecule postulated to be associated with the control of substrate specificity.  相似文献   

4.
A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co^2+, Fe^2+, Mg^2+, or Mn^2+ but was strongly inhibited by 2.0 mM Fe^2+. Under optimal conditions, the Michaelis constant (Kin) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.  相似文献   

5.
CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP+ reductase (FNR): H2N-CYP175A1-Fdx-FNR-COOH (175FR) and H2N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The Vmax value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the km values of these enzymes were similar. 175RF retained 50% residual activity even at 80 °C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.  相似文献   

6.
7.

Background

Methylenetetrahydrofolate reductase (MTHFR) is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.

Methodology/Principal Findings

MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD) prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β8α8 barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.

Conclusions/Significance

The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme.  相似文献   

8.
The P450 monooxygenases CYP102A1 from Bacillus megaterium and CYP102A3 from Bacillus subtilis are fusion flavocytochromes comprising of a P450 heme domain and a FAD/FMN reductase domain. This protein organization is responsible for the extraordinary catalytic activities making both monooxygenases promising enzymes for biocatalysis. CYP102A1 and CYP102A3 are fatty acid hydroxylases that share 65% identity, and their mutants are able to oxidize a wide range of substrates. In an attempt to increase the process stability of CYP102A1, we exchanged the more unstable reductase domain of CYP102A1 with the more stable reductase domain of CYP102A3. Stability of the chimeric fusion protein was determined spectrophotometrically as well as by measuring the hydroxylation activity towards 12-para-nitrophenoxydodecanoic acid (12-pNCA) after incubation at elevated temperatures. In the reaction with 12-pNCA, the new chimeric protein exhibited 88 and 38% of the activity of CYP102A3 and CYP102A1, respectively, but was able to hydroxylate substrates within a wider temperature range compared with the parental enzymes. Maximum activity was obtained at 51°C, and the half-life at 50°C was with 100 min more than ten times longer than that of CYP102A1 (8 min).  相似文献   

9.
DEAD-box proteins have been implicated in a wide array of cellular processes ranging from initiation of protein synthesis and ribosome biogenesis to mRNA splicing. Here, we report the isolation, biochemical characterization and crystallization of the first thermophilic DEAD box protein, Hera (heat-resistant RNA-dependent ATPase) from Thermus thermophilus HB8. The molecular mass of the deduced Hera protein sequence (510 amino acid residues) is 55.95 kDa. Hera possesses all of the conserved motifs found among the, DEAD-box RNA helicases. In addition, it also has a motif characteristic of the protein component of ribonuclease P at its C-terminal region (residues 372-386). Hera appears to be non-specific with respect to the RNA species that triggers ATPase activity. Nevertheless, at high temperature, ATPase activity is at a maximum when bacterial 16 S rRNA or 23 S rRNA are used as the substrates. Moreover, a deletion of the RNase P protein motif significantly reduces the ability of Hera to hydrolyze ATP in the presence of RNase P RNA. Hera has a specific ATPase activity of 480 units/microg and therefore, displays the highest ATPase specific activity reported for a protein of the RNA helicase family. We determined that Hera shows helix-destabilizing activity, and that the RNA-unwinding or helix-destabilizing activity of Hera is coupled to ATP hydrolysis. Since Hera is a stable thermophilic protein and we have obtained crystals of it diffracting beyond 2.6 A, the possibilities for structure determination of a full-length RNA-helicase are open.  相似文献   

10.
11.
12.
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria, archaea, and eukarya. We report here the identification, expression, and purification of the SSB-like proteins of the thermophilic bacteria Thermus thermophilus and T. aquaticus. The nucleotide (nt) sequence revealed that T. thermophilus SSB (TthSSB) and T. aquaticus (TaqSSB) consist of 264 and 266 amino acids, respectively, and have a molecular weight of 29.87 and 30.03kDa, respectively. The homology between these protein, is very high-82% identity and 90% similarity. They are the largest known prokaryotic SSB proteins. TthSSB and TaqSSB monomers have two putative ssDNA-binding sequences: N-terminal (located in the region from amino acids 1 to 123) and C-terminal (located between amino acids 124 and 264 or 266 in TthSSB and TaqSSB, respectively). PCR-derived DNA fragment containing the complete structural gene for TthSSB or TaqSSB protein was cloned into an expression vector. The clones expressing SSB-like proteins were selected and cloned DNA fragments were verified to be authentic by sequencing several clones. The purification was carried out using reduction of contamination by the host protein with heat treatment, followed by QAE-cellulose and ssDNA-cellulose column chromatography. We found our expression and purification system to be quite convenient and efficient, and will use it for production of thermostable SSB-proteins for crystallography study. We have applied the use of TthSSB and TaqSSB protein to increase the amplification efficiency with a number of diverse templates. The use of SSB protein may prove to be generally applicable in improving the PCR efficiency.  相似文献   

13.
The kinetics of formation and breakdown of the putative active oxygenating intermediate in cytochrome P450, a ferryl-oxo-(pi) porphyrin cation radical (Compound I), have been analyzed in the reaction of a thermostable P450, CYP119, with meta-chloroperoxybenzoic acid (m-CPBA). Upon rapid mixing of m-CPBA with the ferric form of CYP119, an intermediate with spectral features characteristic of a ferryl-oxo-(pi) porphyrin cation radical was clearly observed and identified by the absorption maxima at 370, 610, and 690 nm. The rate constant for the formation of Compound I was 3.20 (+/-0.3) x 10(5) m(-1) s(-1) at pH 7.0, 4 degrees C, and this rate decreased with increasing pH. Compound I of CYP119 decomposed back to the ferric form with a first order rate constant of 29.4 +/- 3.4 s(-1), which increased with increasing pH. These findings form the first kinetic analysis of Compound I formation and decay in the reaction of m-CPBA with ferric P450.  相似文献   

14.
The CsaA protein was first characterized in Bacillus subtilis as a molecular chaperone with export-related activities. Here we report the 2.0 Angstrom-resolution crystal structure of the Thermus thermophilus CsaA protein, designated ttCsaA. Atomic structure and experiments in solution revealed a homodimer as the functional unit. The structure of the ttCsaA monomer is reminiscent of the well known oligonucleotide-binding fold, with the addition of extensions at the N- and C-termini that form an extensive dimer interface. The two identical, large, hydrophobic cavities on the protein surface are likely to constitute the substrate binding sites. The CsaA proteins share essential sequence similarity with the tRNA-binding protein Trbp111. Structure-based sequence analysis suggests a close structural resemblance between these proteins, which may extend to the architecture of the binding sites at the atomic level. These results raise the intriguing possibility that CsaA proteins possess a second, tRNA-binding activity in addition to their export-related function.  相似文献   

15.
The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO) superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H+ and e- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the CuB atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fea3 and CuB atoms that is best modeled as peroxide. The structure of ba3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the door for systematic structure-function studies.  相似文献   

16.
17.
Purification and characterization of Thermus thermophilus UvrD   总被引:1,自引:0,他引:1  
The DNA helicase UvrD (helicase II) protein plays an important role in nucleotide excision repair, mismatch repair, rolling circular plasmid replication, and in DNA replication. A homologue of the Escherichia coli uvrD gene was previously identified in Thermus thermophilus; however, to date, a UvrD helicase has not been purified and characterized from a thermophile. Here we report the purification and characterization of a UvrD protein from Thermus thermophilus HB8. The purified UvrD has a temperature range from 10 degrees to >65 degrees C, with an optimum of 50 degrees C, within the temperature limits of the assay. The enzyme had a requirement for divalent metal ions and nucleoside triphosphates which related to enzyme activity in the order ATP > dATP > dGTP > GTP > CTP > dCTP > UTP. A simple real-time helicase assay was developed that should facilitate detailed kinetic studies of the enzyme. Evaluation of helicase substrates using this assay showed that the enzyme was highly active on a double-stranded DNA with 5' recessed ends in comparison with substrates with 3' recessed or blunt ends, and supports enzyme translocation in a 3'-5' direction relative to the strand bound by the enzyme.  相似文献   

18.
The crystal structures of highly thermostable xylose isomerases from Thermus thermophilus (TthXI) and Thermus caldophilus (TcaXI), both with the optimum reaction temperature of 90 degrees C, have been determined by X-ray crystallography. The model of TcaXI has been refined to an R-factor of 17.8 % for data extending to 2.3 A and that of TthXI to 17.1 % for data extending to 2.2 A. The tetrameric arrangement of subunits characterized by the 222-symmetry and the tertiary fold of each subunit in both TcaXI and TthXI are basically the same as in other xylose isomerases. Each monomer is composed of two domains. Domain I (residues 1 to 321) folds into the (beta/alpha)8-barrel. Domain II (residues 322 to 387), lacking beta-strands, makes extensive contacts with domain I of an adjacent subunit. Each monomer of TcaXI contains ten beta-strands, 15 alpha-helices, and six 310-helices, while that of TthXI contains ten beta-strands, 16 alpha-helices, and five 310-helices. Although the electron density does not indicate the presence of bound metal ions in the present models of both TcaXI and TthXI, the active site residues show the conserved structural features. In order to understand the structural basis for thermostability of these enzymes, their structures have been compared with less thermostable XIs from Arthrobacter B3728 and Actinoplanes missouriensis (AXI and AmiXI), with the optimum reaction temperatures of 80 degrees C and 75 degrees C, respectively. Analyses of various factors that may affect protein thermostability indicate that the possible structural determinants of the enhanced thermostability of TcaXI/TthXI over AXI/AmiXI are (i) an increase in ion pairs and ion-pair networks, (ii) a decrease in the large inter-subunit cavities, (iii) a removal of potential deamidation/isoaspartate formation sites, and (iv) a shortened loop.  相似文献   

19.
Potentiometric study of cytochrome c1aa3 from Thermus thermophilus   总被引:1,自引:0,他引:1  
We have examined the redox behavior of the cytochrome c1aa3 complex from Thermus thermophilus. In potentiometric titrations the cytochrome c behaves as an independent center having n = 1 and E = 205 mV (NHE). Under the assumption that the individual centers equilibrate independently in this experiment, changes in the absorption band at 603 nm have been resolved into two components: cytochrome a (n = 1, Em = 270 mV, 60% spectral contribution) and cytochrome a3 (n = 2, Em = 360 mV, 40% spectral contribution). The n = 2 process was attributed to strong chemical coupling between cytochrome a3 and CuB. The enzyme was also titrated with a mixture of NADH and PMS, and the results are shown not to conform to a model of intramolecular equilibrium according to the equilibrium constants obtained from the potentiometric titration. It is suggested that a conformational equilibrium within the complex may control electron transfer between cytochromes a and a3.  相似文献   

20.
Genes of an extremely thermophilic bacterium, Thermus thermophilus, were disrupted by homologous recombination using a recently developed, thermostable kanamycin-resistant marker. First, the trpE gene was disrupted with various constructions of DNA. The transformation efficiency was exponentially increased as the length of the homologous regions flanking the marker gene increased above the minimum length (200-300 bp). We then disrupted five genes of the nucleotide excision repair system and examined their phenotypes. The convenience and high reliability of this method should prompt its application to the high-throughput systematic disruption of the genes of this thermophilic bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号