首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The HAMP linker, a predicted structural element observed in many sensor kinases and methyl-accepting chemotaxis proteins, transmits signals between sensory input modules and output modules. HAMP linkers are located immediately inside the cytoplasmic membrane and are predicted to form two short amphipathic alpha-helices (AS-1 and AS-2) joined by an unstructured connector. HAMP linkers are found in the Escherichia coli nitrate- and nitrite-responsive sensor kinases NarX and NarQ (which respond to ligand by increasing kinase activity) and the sensor kinase CpxA (which responds to ligand by decreasing kinase activity). We constructed a series of hybrids with fusion points throughout the HAMP linker, in which the sensory modules of NarX or NarQ are fused to the transmitter modules of NarX, NarQ, or CpxA. A hybrid of the NarX sensor module and the CpxA HAMP linker and transmitter module (NarX-CpxA-1) responded to nitrate by decreasing kinase activity, whereas a hybrid in which the HAMP linker of NarX was replaced by that of CpxA (NarX-CpxA-NarX-1) responded to nitrate by increasing kinase activity. However, sequence variations between HAMP linkers do not allow free exchange of HAMP linkers or their components. Certain deletions in the NarX HAMP linker resulted in characteristic abnormal responses to ligand; similar deletions in the NarQ and NarX-CpxA-1 HAMP linkers resulted in responses to ligand generally similar to those seen in NarX. We conclude that the structure and action of the HAMP linker are conserved and that the HAMP linker transmits a signal to the output domain that ligand is bound.  相似文献   

2.
HAMP domains are signal transduction domains typically located between the membrane anchor and cytoplasmic signaling domain of the proteins in which they occur. The prototypical structure consists of two helical amphipathic sequences (AS-1 and AS-2) connected by a region of undetermined structure. The Escherichia coli aerotaxis receptor, Aer, has a HAMP domain and a PAS domain with a flavin adenine dinucleotide (FAD) cofactor that senses the intracellular energy level. Previous studies reported mutations in the HAMP domain that abolished FAD binding to the PAS domain. In this study, using random and site-directed mutagenesis, we identified the distal helix, AS-2, as the component of the HAMP domain that stabilizes FAD binding. AS-2 in Aer is not amphipathic and is predicted to be buried. Mutations in the sequence coding for the contiguous proximal signaling domain altered signaling by Aer but did not affect FAD binding. The V264M residue replacement in this region resulted in an inverted response in which E. coli cells expressing the mutant Aer protein were repelled by oxygen. Bioinformatics analysis of aligned HAMP domains indicated that the proximal signaling domain is conserved in other HAMP domains that are not involved in chemotaxis or aerotaxis. Only one null mutation was found in the coding sequence for the HAMP AS-1 and connector regions, suggesting that these are not active signal transduction sites. We consider a model in which the signal from FAD is transmitted across a PAS-HAMP interface to AS-2 or the proximal signaling domain.  相似文献   

3.
H Park  M Inouye 《Journal of bacteriology》1997,179(13):4382-4390
EnvZ, a transmembrane signal transducer, is composed of a periplasmic sensor domain, transmembrane domains, and a cytoplasmic signaling domain. Between the second transmembrane domain and the cytoplasmic signaling domain there is a linker domain consisting of approximately 50 residues. In this study, we investigated the functional role of the EnvZ linker domain with respect to signal transduction. Amino acid sequence alignment of linker regions among various bacterial signal transducer proteins does not show a high sequence identity but suggests a common helix 1-loop-helix 2 structure. Among several mutations introduced in the EnvZ linker region, it was found that hydrophobic-to-charged amino acid substitutions in helix 1 and helix 2 and deletions in helix 1, loop, and helix 2 (delta14, delta8, and delta7) resulted in constitutive OmpC expression. In the linker mutant EnvZ x delta7, both kinase and phosphatase activities were significantly reduced but the ratio of kinase to phosphatase activity increased, consistent with the constitutive OmpC expression. In contrast, the purified cytoplasmic fragment of EnvZ x delta7 possessed both kinase and phosphatase activities at levels similar to those of the cytoplasmic fragment of wild-type EnvZ. In addition, the linker mutations had no direct effect on EnvZ C-terminal dimerization. These results together with previous data suggest that the linker region is not directly involved in EnvZ enzymatic activities and that it may have a crucial role in propagating a conformational change to ensure correct positioning of two EnvZ molecules within a dimer during the transmembrane signaling.  相似文献   

4.
The HAMP linker, a common structural element between a sensor and a transmitter module in various sensor proteins, plays an essential role in signal transduction. Here, by in vivo complementation experiments with Tar-EnvZ hybrid receptor mutants in which the HAMP linker forms a heterodimer with Tar and EnvZ-type subunits, we found that mutations at one linker only affect the function of EnvZ in the same subunit. However, the same mutations affect the EnvZ function of both subunits when only a Tar or EnvZ-type HAMP linker is used. These results suggest that intersubunit interactions in the HAMP linker normally mediate signal transduction through both subunits in a sensor dimer, whereas the signal is asymmetrically transduced through the linker in a heterodimer. This is the first demonstration that two HAMP linkers in a sensor dimer are functionally coupled for normal signal transduction; however, this functional coupling can be reduced when the HAMP linkers lose their symmetric nature.  相似文献   

5.
HAMP domains are approximately 50-residue motifs, found in many bacterial signaling proteins, that consist of two amphiphilic helices joined by a nonhelical connector segment. The HAMP domain of Tsr, the serine chemoreceptor of Escherichia coli, receives transmembrane input signals from the periplasmic serine binding domain and in turn modulates output signals from the Tsr kinase control domain to elicit chemotactic responses. We created random amino acid replacements at each of the 14 connector residues of Tsr-HAMP to identify those that are critical for Tsr function. In all, we surveyed 179 connector missense mutants and identified three critical residues (G235, L237, and I241) at which most replacements destroyed Tsr function and another important residue (G245) at which most replacements impaired Tsr function. The region surrounding G245 tolerated 1-residue deletions and insertions of up to 10 glycines, suggesting a role as a relatively nonspecific, flexible linker. The critical connector residues are consistent with a structural model of the Tsr-HAMP domain based on the solution structure of an isolated thermophile HAMP domain (M. Hulko, F. Berndt, M. Gruber, J. U. Linder, V. Truffault, A. Schultz, J. Martin, J. E. Schultz, A. N. Lupas, and M. Coles, Cell 126:929-940, 2006) in which G235 defines a critical turn at the C terminus of the first helix and L237 and I241 pack against the helices, perhaps to stabilize alternative HAMP signaling conformations. Most I241 lesions locked Tsr signal output in the kinase-on mode, implying that this residue is responsible mainly for stabilizing the kinase-off signaling state. In contrast, lesions at L237 resulted in a variety of aberrant output patterns, suggesting a role in toggling output between signaling states.  相似文献   

6.
Dicarboximides and phenylpyrroles are commonly used fungicides against plant pathogenic ascomycetes. Although their effect on fungal osmosensing systems has been shown in many studies, their modes-of-action still remain unclear. Laboratory- or field-mutants of fungi resistant to either or both fungicide categories generally harbour point mutations in the sensor histidine kinase of the osmotic signal transduction cascade.In the present study we compared the mechanisms of resistance to the dicarboximide iprodione and to pyrrolnitrin, a structural analogue of phenylpyrrole fungicides, in Botrytis cinerea. Pyrrolnitrin-induced mutants and iprodione-induced mutants of B. cinerea were produced in vitro. For the pyrrolnitrin-induced mutants, a high level of resistance to pyrrolnitrin was associated with a high level of resistance to iprodione. For the iprodione-induced mutants, the high level of resistance to iprodione generated variable levels of resistance to pyrrolnitrin and phenylpyrroles. All selected mutants showed hypersensitivity to high osmolarity and regardless of their resistance levels to phenylpyrroles, they showed strongly reduced fitness parameters (sporulation, mycelial growth, aggressiveness on plants) compared to the parental phenotypes. Most of the mutants presented modifications in the osmosensing class III histidine kinase affecting the HAMP domains. Site directed mutagenesis of the bos1 gene was applied to validate eight of the identified mutations. Structure modelling of the HAMP domains revealed that the replacements of hydrophobic residues within the HAMP domains generally affected their helical structure, probably abolishing signal transduction. Comparing mutant phenotypes to the HAMP structures, our study suggests that mutations perturbing helical structures of HAMP2-4 abolish signal-transduction leading to loss-of-function phenotype. The mutation of residues E529, M427, and T581, without consequences on HAMP structure, highlighted their involvement in signal transduction. E529 and M427 seem to be principally involved in osmotic signal transduction.  相似文献   

7.
HAMP domains are sensory transduction modules that connect input and output domains in diverse signaling proteins from archaea, bacteria, and lower eukaryotes. Here, we employed in vivo disulfide cross-linking to explore the structure of the HAMP domain in the Escherichia coli aerotaxis receptor Aer. Using an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue pairs at the interface of the HAMP AS-1 and AS-2' helices were determined and then replaced with cysteines and cross-linked in vivo. Except for a unique discontinuity in AS-2, the data suggest that the Aer HAMP domain forms a parallel four-helix bundle that is similar to the structure of Af1503. The HAMP discontinuity was associated with a segment of AS-2 that was recently shown to interact with the Aer-PAS sensing domain. The four-helix HAMP bundle and its discontinuity were maintained in both the kinase-on and kinase-off states of Aer, although differences in the rates of disulfide formation also indicated the existence of different HAMP conformations in the kinase-on and kinase-off states. In particular, the kinase-on state was accompanied by significantly increased disulfide formation rates at the distal end of the HAMP four-helix bundle. This indicates that HAMP signaling may be associated with a tilting of the AS-1 and AS-2' helices, which may be the signal that is transmitted to the kinase control region of Aer.  相似文献   

8.
Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combining mutations with opposing activities in the two regions, we show that these two signalling transduction elements are integrated to produce a combined effect on the final activity of DctB.  相似文献   

9.
The Escherichia coli NarX, NarQ, NarL and NarP proteins comprise a two-component regulatory system that controls the expression of many anaerobic electron-transport and fermentation-related genes in response to nitrate and nitrite. Either of the two sensor-transmitter proteins, NarX and NarQ, can activate the response-regulator proteins, NarL and NarP, which in turn are able to bind at their respective DNA regulatory sites to modulate gene expression. NarX contains a conserved 17 amino acid sequence, designated the ‘P-box’ element, that is essential for nitrate sensing. In this study we characterize narQ mutants that also confer altered nitrate control of NarL-dependent nitrate reductase (narGHJI ) and fumarate reductase (frdABCD) gene expression. While some narQ mutations cause the constitutive activation or repression of reporter-gene expression even when the cells are grown in the absence of the nitrate signal (i.e. a ‘locked-on’ phenotype), other mutations abolish nitrate-dependent control (i.e. a ‘locked-off’ phenotype). Interestingly the narQ (A42→T) and narQ (R50→Q) mutations along with the analogous narX18 (A46→T) and narX902 (R54→E) mutations also confer a ‘locked-on’ or a ‘locked-off’ phenotype in response to nitrite, the second environmental signal detected by NarQ and NarX. Furthermore, these narQ and narX mutations also affect NarP-dependent gene regulation of nitrite reductase (nrfABCDEFG) and aeg-46.5 gene expression in response to nitrite. We therefore propose that the NarQ sensor-transmitter protein also detects nitrate and nitrite in the periplasmic space via its periplasmic domain. A signal transduction model, which we previously proposed for NarX, is now extended to NarQ, in which a nitrate- or nitrite-detection event in the periplasmic region of the cell is followed by a signal transduction event through the inner membrane to the cytoplasmic domain of NarQ and NarX proteins to modulate their protein kinase/phosphatase activities.  相似文献   

10.
Sensory rhodopsin II, the photophobic receptor from Natronomonas pharaonis (NpSRII)5, forms a 2:2 complex with its cognate transducer (N. pharaonis halobacterial transducer of rhodopsins II (NpHtrII)) in lipid membranes. Light activation of NpSRII leads to a displacement of helix F, which in turn triggers a rotation/screw-like motion of TM2 in NpHtrII. This conformational change is thought to be transmitted through the membrane adjacent conserved signal transduction domain in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases (HAMP domain) to the cytoplasmic signaling domain of the transducer. The architecture and function of the HAMP domain are still unknown. In order to obtain information on the structure and dynamics of this region, EPR experiments on a truncated transducer (NpHtrII(157)) and NpSRII, site-directed spin-labeled and reconstituted into purple membrane lipids, have been carried out. A nitroxide scanning involving residues in the transducer helix TM2, in the predicted AS-1 region, and at selected positions in the following connector and AS-2 regions of the HAMP domain has been performed. Accessibility and dynamics data allowed us to identify a helical region up to residue Ala(94) in the AS-1 amphipathic sequence, followed by a highly dynamic domain protruding into the water phase. Additionally, transducer-transducer and transducer-receptor proximity relations revealed the overall architecture of the AS-1 sequences in the 2:2 complex, which are suggested to form a molten globular type of a coiled-coil bundle.  相似文献   

11.
The BarA-UvrY two-component system family is strongly associated with virulence but is poorly understood at the molecular level. During our attempts to complement a barA deletion mutant, we consistently generated various mutated BarA proteins. We reasoned that characterization of the mutants would help us to better understand the signal transduction mechanism in tripartite sensors. This was aided by the demonstrated ability to activate the UvrY regulator with acetyl phosphate independently of the BarA sensor. Many of the mutated BarA proteins had poor complementation activity but could counteract the activity of the wild-type sensor in a dominant-negative fashion. These proteins carried point mutations in or near the recently identified HAMP linker, previously implicated in signal transduction between the periplasm and cytoplasm. This created sensor proteins with an impaired kinase activity and a net dephosphorylating activity. Using further site-directed mutagenesis of a HAMP linker-mutated protein, we could demonstrate that the phosphoaccepting aspartate 718 and histidine 861 are crucial for the dephosphorylating activity. Additional analysis of the HAMP linker-mutated BarA sensors demonstrated that a dephosphorylating activity can operate via phosphotransfer within a tripartite sensor dimer in vivo. This also means that a tripartite sensor can be arranged as a dimer even in the dephosphorylating mode.  相似文献   

12.
Minimal requirements for oxygen sensing by the aerotaxis receptor Aer   总被引:6,自引:2,他引:4  
The PAS and HAMP domain superfamilies are signal transduction modules found in all kingdoms of life. The Aer receptor, which contains both domains, initiates rapid behavioural responses to oxygen (aerotaxis) and other electron acceptors, guiding Escherichia coli to niches where it can generate optimal cellular energy. We used intragenic complementation to investigate the signal transduction pathway from the Aer PAS domain to the signalling domain. These studies showed that the HAMP domain of one monomer in the Aer dimer stabilized FAD binding to the PAS domain of the cognate monomer. In contrast, the signal transduction pathway was intra-subunit, involving the PAS and signalling domains from the same monomer. The minimal requirements for signalling were investigated in heterodimers containing a full-length and truncated monomer. Either the PAS or signalling domains could be deleted from the non-signalling subunit of the heterodimer, but removing 16 residues from the C-terminus of the signalling subunit abolished aerotaxis. Although both HAMP domains were required for aerotaxis, signalling was not disrupted by missense mutations in the HAMP domain from the signalling subunit. Possible models for Aer signal transduction are compared.  相似文献   

13.
14.
Nitrate and nitrite control of anaerobic respiratory gene expression is mediated by dual two-component regulatory systems. The sensors NarX and NarQ each communicate nitrate and nitrite availability to the response regulators NarL and NarP. In the presence of nitrate, the NarX protein acts as a positive regulator ("kinase") of both NarL and NarP activity. In the presence of nitrite, the NarX protein acts primarily as a negative regulator ("phosphatase") of NarL activity but remains a positive regulator of NarP activity. In other topologically similar sensory proteins, such as the methyl-accepting chemotaxis proteins, the transmembrane regions are important for signal transduction. We therefore used localized mutagenesis of the amino-terminal coding region to isolate mutations in narX that confer an altered signaling phenotype. Five of the mutations studied alter residues in the amino-terminal cytoplasmic tail, and five alter residues in the first transmembrane segment. Based on patterns of target operon expression in various regulatory mutant strain backgrounds, most of the mutant NarX proteins appear to have alterations in negative control function. One mutant, with a change of residue Leu-11 to Pro in the cytoplasmic tail, exhibits strikingly altered patterns of NarL- and NarP-dependent gene expression. We conclude that the amino terminus of the NarX protein is important for the differential response to nitrate and nitrite.  相似文献   

15.
Tez1 is a chimeric protein in which the periplasmic and transmembrane domains of Tar, a chemosensor, are fused to the cytoplasmic catalytic domain of EnvZ, an osmosensing histidine kinase, through the EnvZ linker. Unlike Taz1 (a similar hybrid with the Tar linker), Tez1 could not respond to Tar ligand, aspartate, whereas single Ala insertion at the transmembrane/linker junction, as seen in Tez1A1, restored the aspartate-regulatable phenotype. Analysis of the Ala insertion site requirement and the nature of the insertion residue on the phenotype of Tez1 indicated that a junction region between the transmembrane domain and the predicted helix I in the linker is critical to signal transduction. Random mutagenesis revealed that P185Q mutation in the Tez1 linker restored the aspartate-regulatable phenotype. Substitution mutations at Pro-185 further demonstrated that specific residues are required at this site for an aspartate response. None of the hybrid receptors constructed with different Tar/EnvZ fusion sites in the linker could respond to aspartate, suggesting that specific interactions between the two predicted helices in the linker are important for the linker function. In addition, a mutation (F220D) known to cause an OmpCc phenotype in EnvZ resulted in similar OmpCc phenotypes in both Tez1A1 and Tez1, indicating the importance of the predicted helix II in signal propagation. Together, we propose that the N-terminal junction region modulates the alignment between the two helices in the linker upon signal input. In turn helix II propagates the resultant conformational signal into the downstream catalytic domain of EnvZ to regulate its bifunctional enzymatic activities.  相似文献   

16.
The sensor kinase/response regulator system KdpD/KdpE of Escherichia coli regulates the expression of the kdpFABC operon, which encodes the high affinity K+ transport system KdpFABC. The membrane-bound sensor kinase KdpD consists of four transmembrane domains, a large cytoplasmic N-terminal domain and a cytoplasmic C-terminal transmitter domain. To elucidate the role of the four transmembrane domains, various deletions were introduced in kdpD and the activities of the resulting truncated derivatives of KdpD were determined. A KdpD protein lacking all four transmembrane domains was able to sense low K+ concentrations, whereas at higher K+ concentrations kdpFABC expression was constitutive. These and further results with various truncated KdpD proteins lacking distinct parts of the transmembrane domains or derivatives in which a linker peptide or two transmembrane domains of PutP, the Na+/proline transporter of Escherichia coli, replaced the missing part indicated that the transmembrane domains are not essential for sensing of K+ limitation, but may be important for the correct positioning of the large N- and C-terminal cytoplasmic domains to each other.  相似文献   

17.
Swain KE  Falke JJ 《Biochemistry》2007,46(48):13684-13695
The HAMP domain is a conserved motif widely distributed in prokaryotic and lower eukaryotic organisms, where it is often found in transmembrane receptors that regulate two-component signaling pathways. The motif links receptor input and output modules and is essential to receptor structure and signal transduction. Recently, a structure was determined for a HAMP domain isolated from an unusual archeal membrane protein of unknown function [Hulko, M., et al. (2006) Cell 126, 929-940]. This study uses cysteine and disulfide chemistry to test this archeal HAMP model in the full-length, membrane-bound aspartate receptor of bacterial chemotaxis. The chemical reactivities of engineered Cys residues scanned throughout the aspartate receptor HAMP region are highly correlated with the degrees of solvent exposure of corresponding positions in the archeal HAMP structure. Both domains are homodimeric, and the individual subunits of both domains share the same helix-connector-helix organization with the same helical packing faces. Moreover, disulfide mapping reveals that the four helices of the aspartate receptor HAMP domain are arranged in the same parallel, four-helix bundle architecture observed in the archeal HAMP structure. One detectable difference is the packing of the extended connector between helices, which is not conserved. Finally, activity studies of the aspartate receptor indicate that contacts between HAMP helices 1 and 2' at the subunit interface play a critical role in modulating receptor on-off switching. Disulfide bonds linking this interface trap the receptor in its kinase-activating on-state, or its kinase inactivating off-state, depending on their location. Overall, the evidence suggests that the archeal HAMP structure accurately depicts the architecture of the conserved HAMP motif in transmembrane chemoreceptors. Both the on- and off-states of the aspartate receptor HAMP domain closely resemble the archeal HAMP structure, and only a small structural rearrangement occurs upon on-off switching. A model incorporating HAMP into the full receptor structure is proposed.  相似文献   

18.
Hayashi K  Sudo Y  Jee J  Mishima M  Hara H  Kamo N  Kojima C 《Biochemistry》2007,46(50):14380-14390
Halobacterial pharaonis phoborhodopsin [ppR, also called Natronomonas pharaonis sensory rhodopsin II (NpSRII)] is a phototaxis protein which transmits a light signal to the cytoplasm through its transducer protein (pHtrII). pHtrII, a two-transmembrane protein that interacts with ppR, belongs to the group of methyl-accepting chemotaxis proteins (MCPs). Several mutation studies have indicated that the linker region connecting the transmembrane and methylation regions is necessary for signal transduction. However, the three-dimensional (3D) structure of an MCP linker region has yet to be reported, and hence, details concerning the signal transduction mechanism remain unknown. Here the structure of the pHtrII linker region was investigated biochemically and biophysically. Following limited proteolysis, only one trypsin resistant fragment in the pHtrII linker region was identified. This fragment forms a homodimer with a Kd value of 115 microM. The 3D structure of this fragment was determined by solution NMR, and only one alpha-helix was found between two HAMP domains of the linker region. This alpha-helix was significantly stabilized within transmembrane protein pHtrII as revealed by CW-EPR. The presence of Af1503 HAMP domain-like structures in the linker region was supported by CD, NMR, and ELDOR data. The alpha-helix determined here presumably works as a mechanical joint between two HAMP domains in the linker region to transfer the photoactivated conformational change downstream.  相似文献   

19.
Signal-transducing proteins that span the cytoplasmic membrane transmit information about the environment to the interior of the cell. In bacteria, these signal transducers include sensor kinases, which typically control gene expression via response regulators, and methyl-accepting chemoreceptor proteins, which control flagellar rotation via the CheA kinase and CheY response regulator. We previously reported that a chimeric protein (Nart) that joins the ligand-binding, transmembrane, and linker regions of the NarX sensor kinase to the signaling and adaptation domains of the Tar chemoreceptor elicits a repellent response to nitrate and nitrite. As with NarX, nitrate evokes a stronger response than nitrite. Here we show that mutations targeting a highly conserved sequence (the P box) in the periplasmic domain alter chemoreception by Nart and signaling by NarX similarly. In particular, the G51R substitution converts Nart from a repellent receptor into an attractant receptor for nitrate. Our results underscore the conclusion that the fundamental mechanism of transmembrane signaling is conserved between homodimeric sensor kinases and chemoreceptors. They also highlight the plasticity of the coupling between ligand binding and signal output in these systems.  相似文献   

20.
The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is transduced nor the manner in which the kinase is regulated is currently clear. We have identified several mutations located in the linker region of the Sln1 kinase (just upstream of the kinase domain) that cause hyperactivity of the Sln1 kinase. This region of histidine kinases is largely uncharacterized, but its location between the transmembrane domains and the cytoplasmic kinase domain suggests that it may have a potential role in signal transduction. In this study, we have investigated the Sln1 linker region in order to understand its function in signal transduction and regulation of Sln1 kinase activity. Our results indicate that the linker region forms a coiled-coil structure and suggest a mechanism by which alterations induced by osmotic stress influence kinase activity by altering the alignment of the phospho-accepting histidine with respect to the catalytic domain of the kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号