首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant levels of extracellular glutathione (GSH) were detected in aerobically grown cultures of some strains of Salmonella typhimurium LT-2 and in Escherichia coli K-12, B, and B/r but not in cultures of nine freshly isolated clinical isolates of E. coli. Cultures of S. typhimurium generally contained less total GSH (intracellular plus external) than did E. coli cultures. S. typhimurium TA1534 contained about 2 mM intracellular GSH and exported about 30% of its total GSH. The external GSH concentration increased logarithmically during exponential growth and peaked at about 24 microM in early-stationary-phase cultures. External accumulation of GSH was inhibited by 30 mM NaN3. GSH was predominantly exported in the reduced form. Two-dimensional paper chromatography of supernatants from cultures labeled with Na2(35)SO4 confirmed the presence of GSH and revealed five other sulfur-containing compounds in the media of S. typhimurium and E. coli cultures. The five unidentified compounds were not derivatives of GSH.  相似文献   

2.
During anaerobic growth of bacteria, organic intermediates of metabolism, such as pyruvate or its derivatives, serve as electron acceptors to maintain the overall redox balance. Under these conditions, the ATP needed for cell growth is derived from substrate-level phosphorylation. In Escherichia coli, conversion of glucose to pyruvate yields 2 net ATPs, while metabolism of a pentose, such as xylose, to pyruvate only yields 0.67 net ATP per xylose due to the need for one (each) ATP for xylose transport and xylulose phosphorylation. During fermentative growth, E. coli produces equimolar amounts of acetate and ethanol from two pyruvates, and these reactions generate one additional ATP from two pyruvates (one hexose equivalent) while still maintaining the overall redox balance. Conversion of xylose to acetate and ethanol increases the net ATP yield from 0.67 to 1.5 per xylose. An E. coli pfl mutant lacking pyruvate formate lyase cannot convert pyruvate to acetyl coenzyme A, the required precursor for acetate and ethanol production, and could not produce this additional ATP. E. coli pfl mutants failed to grow under anaerobic conditions in xylose minimal medium without any negative effect on their survival or aerobic growth. An ackA mutant, lacking the ability to generate ATP from acetyl phosphate, also failed to grow in xylose minimal medium under anaerobic conditions, confirming the need for the ATP produced by acetate kinase for anaerobic growth on xylose. Since arabinose transport by AraE, the low-affinity, high-capacity, arabinose/H+ symport, conserves the ATP expended in pentose transport by the ABC transporter, both pfl and ackA mutants grew anaerobically with arabinose. AraE-based xylose transport, achieved after constitutively expressing araE, also supported the growth of the pfl mutant in xylose minimal medium. These results suggest that a net ATP yield of 0.67 per pentose is only enough to provide for maintenance energy but not enough to support growth of E. coli in minimal medium. Thus, pyruvate formate lyase and acetate kinase are essential for anaerobic growth of E. coli on xylose due to energetic constraints.  相似文献   

3.
Freeze-drying of Escherichia coli cells caused strand breaks of deoxyribonucleic acid (DNA) in both radiation-sensitive and -resistant strains. However, in the radiation-resistant strain E. coli B/r the damaged DNA was repaired after rehydration, whereas in the radiation-sensitive strain E. coli Bs-1 the damaged DNA was not repaired and the DNA was degraded. Repeated freeze-drying did not break the damaged DNA into smaller pieces.  相似文献   

4.
A procedure has been developed for isolating mutants which are defective with respect to nicotinamide adenine dinucleotide (NAD) metabolism. It is based on the well known V-factor requirement of Haemophilus parainfluenzae. This procedure was used to isolate a series of mutants from Escherichia coli. The pyridine metabolism of wild-type and mutant E. coli cells falls in one of four distinct classes. Class A includes wild-type E. coli and represents strains that are normal with respect to pyridine metabolism. Class B mutants have altered internal pools of NAD. The intracellular NAD concentration of different class B mutants varies over a 10-fold range. Class C mutants excrete pyridine mononucleotides, and class D mutants excrete NAD. The production of pyridine nucleotides by class C and D mutants exceeds that of wild-type E. coli by a factor of at least ten. The mutant strains generally have normal generation times and achieve normal cell densities in minimal medium.  相似文献   

5.
Effect of the M (modifier) gene of Escherichia coli W on the expression of wild-type structural genes of four arginine biosynthetic enzymes was studied by examining enzyme activity in cell-free extracts of cultures grown in minimal medium and medium containing arginine. The mutant M gene was originally identified as causing arginine-induced synthesis of acetylornithine delta-transaminase in a strain deficient for the enzyme. The strains used in this study received the mutant M gene by recombination. Noncoordinate repression has been demonstrated for two more enzymes of the arginine regulon of E. coli W and the M(-) gene increases the degree of noncoordinate repression for the regulon. Mutation of the M gene results in altered regulation of acetylornithine delta-transaminase, ornithine transcarbamylase, and acetylornithinase. In addition, a decreased growth rate is observed. It is proposed that the M gene is a regulatory gene. A model is presented to explain the data which involves changes in operator-repressor affinity for the structural genes and possibly for the gene controlling arginyl transfer ribonucleic acid synthetase.  相似文献   

6.
Lysyl-transfer ribonucleic acid (tRNA) synthetase activity was compared in three independently isolated Escherichia coli K-12 mutants of the enzyme S-adenosyl-L-methionine synthetase (metK mutants) and their isogenic parents. In all three cases the activity of the lysyl-tRNA synthetase was elevated two- to fourfold in the mutant strains. Glycyl-L-leucine (3 mM) usually enhanced lysyl-tRNA synthetase activity two- to threefold in wild-type cells but did not further stimulate the synthetase activity in metK mutants. By two other criteria, the lysyl-tRNA synthetase from wild-type cells grown with the peptide and from the metK mutant RG62, grown in minimal medium, were similar. These criteria are enhanced resistance to thermal inactivation and altered susceptibility to endogenous proteases when compared with the synthetase from wild-type cells grown in minimal medium. In a separate set of experiments, the activities of the lysyl-, arginyl-, seryl-, and valyl-tRNA synthetases were measured in an isogenic pair of relt and rel strains of E. coli grown in a relatively poor growth medium (acetate) and in enriched medium. In the rel+ strain the level of all four synthetases was higher (two- to fourfold) in the enriched medium as expected. In the rel strain the difference in the activities of the synthetases between the two media were diminished. In all four cases the activities of the synthetases were higher in acetate medium in the rel strain. Evidence is presented that these two modes of metabolic regulation act independently.  相似文献   

7.
Nutrients usually cross the outer membrane of Escherichia coli by diffusion through water-filled channels surrounded by a specific class of protein, porins. In this study, the rates of diffusion of hydrophilic nonelectrolytes, mostly sugars and sugar alcohols, through the porin channels were determined in two systems, (a) vesicles reconstituted from phospholipids and purified porin and (b) intact cells of mutant strains that produce many fewer porin molecules than wild-type strains. The diffusion rates were strongly affected by the size of the solute, even when the size was well within the "exclusion limit" of the channel. In both systems, hexoses and hexose disaccharides diffused through the channel at rates 50-80% and 2-4%, respectively, of that of a pentose, arabinose. Application of the Renkin equation to these data led to the estimate that the pore radius is approximately 0.6 nm, if the pore is assumed to be a hollow cylinder. The results of the study also show that the permeability of the outer membrane of the wild-type E. coli cell to glucose and lactose can be explained by the presence of porin channels, that a significant fraction of these channels must be functional or "open" under our conditions of growth, and that even 10(5) channels per cell could become limiting when E. coli tries to grow at a maximal rate on low concentrations of slowly penetrating solutes, such as disaccharides.  相似文献   

8.
Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. Among them, the one component Fnr protein and the two-component Arc system coordinate the adaptive responses to oxygen availability. To systematically investigate the contribution of Arc- and Fnr-dependent regulation in catabolism, glucose-limited chemostat cultures were conducted on wild-type E. coli, an arcA mutant, an fnr mutant, and an arcAfnr double mutant strains under a well-defined semi-aerobic condition. The metabolic flux distributions of the cultures of these strains were estimated based on C-13 labeling experiments. It was shown that the oxidative pentose phosphate (PP) pathway was functioning at low level under semi-aerobic condition. The fluxes through pyruvate dehydrogenase (PDH) and tricarboxylic acid (TCA) cycle were found to be lower in the arcA mutant and the arcAfnr double mutant strains than that in the wild-type strain, although the expression of the genes involved in these pathways have been proved to be derepressed in the mutant strains ([Shalel-Levanon, S., San, K.Y., Bennett, G.N., 2005a. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol. Bioeng. 92, 147-159; Shalel-Levanon, S., San, K.Y., Bennett, G.N., 2005c. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab. Eng. 7, 364-374]). The significantly higher lactate production in the arcAfnr double mutant strain was shown to be an indirect effect caused by the reduced pyruvate formate-lyase (PFL) and PDH fluxes as well as the intracellular redox state.  相似文献   

9.
DNA from the radiation-resistant bacterium Deinococcus radiodurans was isolated and used to generate a cosmid library. This cosmid library was grown in Escherichia coli and radiation-resistant E. coli were isolated. Following exposure to 1000 Gy the radiation-resistant transformants exhibited a survival of approximately 10(-1) instead of the 10(-11) exhibited by the nontransformed E. coli. Smaller fragments of DNA were subcloned from the radiation-resistant E. coli; these fragments bestow similar levels of radiation resistance (ratio of slopes = 6.8) to native E. coli upon transfection.  相似文献   

10.
Escherichia coli strains devoid of one or both of the two pyruvate kinase isoenzymes (PKA and PKF), were grown on minimal media in batch fermentations. The strain lacking both PKs showed a 28% decrease on its specific growth rate when compared to the wild type. However, protein and CO2 yields did not change. Using radioactive 1-C14 glucose and collecting the CO2 produced by the cultures, it was found that the mutant lacking both pyruvate kinases, metabolized glucose mainly through the pentose pathway (PP). The increased participation of the PP in glucose metabolism in this strain, was also reflected on the levels of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases.Copyright 1998 John Wiley & Sons, Inc.  相似文献   

11.
Insulin on Escherichia coli was studied using wild type E. coli B/r and K12 strains and a number of phosphoenolpyruvate phosphotransferase mutants. In vivo, the effects of insulin on the differential rate of tryptophanase synthesis, the rate of alpha-methylglucoside uptake and the rate of growth on glucose were determined in E. coli B/r. In vitro, the effect of insulin on the adenylate cyclase and the phosphotransferase activities was determined using toluenized cell preparations of E. coli B/r, E. coli K12 and phosphotransferase mutant strains. The specificity of insulin action on E. coli was determined using glucagon, vasopressin and somatropin as well as insulin antisera. Results show the specific action of insulin on E. coli, inhibiting tryptophanase induction and adenylate cyclase activity, while stimulating growth on glucose and uptake and phosphorylation of alpha-methylglucoside.  相似文献   

12.
The Bradyrhizobium japonicum fumarase gene (fumC-like) was cloned and sequenced, and a fumC deletion mutant was constructed. This mutant had a Nod+ Fix+ phenotype in symbiosis with the host plant, soybean, and growth in minimal medium with fumarate as sole carbon source was also not affected. The cloned B. japonicum fumC gene fully complemented an Escherichia coli Fum- mutant, strain JH400, for growth in minimal medium with fumarate. The predicted amino acid sequence of the FumC protein showed strong similarity to the E. coli FumC protein, Bacillus subtilis CitG protein, Saccharomyces cerevisiae Fum1 protein, and the mammalian fumarases. The B. japonicum FumC protein accounted for about 40% of the total fumarase activity in aerobically grown cells. The remaining 60% was ascribed to a temperature-labile fumarase. These data suggest that B. japonicum possesses two different fumarase isoenzymes, one of which is encoded by fumC. Besides E. coli, which has three fumarases, B. japonicum is thus the second bacterium for which there is genetic evidence for the existence of more than one fumarase.  相似文献   

13.
Representative thiazines, xanthenes, acridines, and phenazines photosensitized the oxidation of reduced pyridine nucleotides and reduced glutathione when illuminated with low intensity visible light. Photooxidation resulted in oxygen consumption and in superoxide generation, assayed as the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c. The major pathway of electron transfer involved dye reduction rather than singlet oxygen-mediated oxidation of the substrate, as demonstrated by the relative insensitivity of the oxidation to inhibition by sodium azide and by the observable bleaching of the dye. Hydrogen peroxide was a stable end product of photooxidation. Photosensitive dyes were photoreduced intracellularly. These dyes were transported across the membranes of Escherichia coli B and stimulated a light- and concentration-dependent increase in the cyanide-insensitive respiration. Dyes reduced intracellularly subsequently diffused out of the cell where they reduced extracellular cytochrome c. The photosensitive dyes examined in this study exhibited a light-dependent bacteriostatic effect on E. coli B grown in nutrient broth, manifested as an increased lag prior to growth. Restoration of growth coincided with increased levels of SOD, and the intracellular level of SOD correlated with the level of illumination, the dye concentration, and the reactivity of the dye to NADH in vitro. The thiazine dye, toluidine blue o, imposed a light- and oxygen-dependent lethality on E. coli B grown in glucose minimal medium. Toxicity was relieved by hydroxyl radical scavengers, and their ability to protect the cells was proportional to their reactivity with the hydroxyl radical. The results indicate that oxygen radicals and related species mediate photodynamic effects in E. coli B.  相似文献   

14.
Under certain growth conditions, some strains of Escherichia coli accumulate toxic levels of methylglyoxal. This report characterizes a strain which synthesizes a mutant cAMP receptor protein in an adenylate cyclase deletion background. When cultured in glucose 6-phosphate minimal medium, this strain (222) was prematurely growth arrested due to methylglyoxal production; growth inhibition did not occur when the strain was grown in glucose minimal medium. A comparison of a variety of enzyme and cofactor levels in the related strains 222 (mutant) and 225 (wild-type) grown on either glucose or glucose 6-phosphate medium was carried out. The only difference found that might explain an increase in methylglyoxal accumulation was an elevated level of phosphofructokinase in strain 222 grown on glucose 6-phosphate. Since this enzyme activity probably limits hexose phosphate metabolism, it is suggested that growth inhibition in strain 222 may be due to increased production of triose phosphate, some of which is converted to methylglyoxal.  相似文献   

15.
Modeling of batch kinetics in minimal synthetic medium was used to characterize Escherichia coli O157:H7 growth, which appeared to be different from the exponential growth expected in minimal synthetic medium and observed for E. coli K-12. The turbidimetric kinetics of 14 of the 15 O157:H7 strains tested (93%) were nonexponential, whereas 25 of the 36 other E. coli strains tested (70%) exhibited exponential kinetics. Moreover, the anomaly was almost corrected when the minimal medium was supplemented with methionine. These observations were confirmed with two reference strains by using plate count monitoring. In mixed cultures, E. coli K-12 had a positive effect on E. coli O157:H7 and corrected its growth anomaly. This demonstrated that commensalism occurred, as the growth curve for E. coli K-12 was not affected. The interaction could be explained by an exchange of methionine, as the effect of E. coli K-12 on E. coli O157:H7 appeared to be similar to the effect of methionine.  相似文献   

16.
Based on measurements and theoretical analyses, we identified deletion of pyruvate kinase (PYK) activity as a possible route for elimination of acid formation in Bacillus subtilis cultures grown on glucose minimal media. Evidence consistent with the attenuation of PYK flux has come from metabolic flux calculations, metabolic pool and enzymatic activity measurements, and a series of nuclear magnetic resonance experiments, all suggesting a nearly complete inhibition of PYK activity for glucose-citrate fed cultures in which the amount of acid formation was nearly zero. In this paper, we report the construction and characterization of a pyk mutant of B. subtilis. Our results demonstrate an almost complete elimination of acid production in cultures of the pyk mutant in glucose minimal medium. The substantial reduction in acid production is accompanied by increased CO(2) production and a reduced rate of growth. Metabolic analysis indicated a dramatic increase in intracellular pools of phosphoenolpyruvate (PEP) and glucose-6-P in the pyk mutant. The high concentrations of PEP and glucose-6-P could explain the decreased growth rate of the mutant. The substantial accumulation of PEP does not occur in Escherichia coli pyk mutants. The very high concentration of PEP which accumulates in the B. subtilis pyk mutant could be exploited for production of various aromatics.  相似文献   

17.
Mapping of sul, the suppressor of lon in Escherichia coli.   总被引:7,自引:5,他引:2       下载免费PDF全文
The suppressor sul, which is allele specific for the ultraviolet sensitivity gene lon, has been mapped by conjugation and transductional crosses in Escherichia coli K-12 and B/r. Previously, sul was reported to lie in the azi region of the Escherichia coli chromosome. Evidence is presented which positions sul close to and clockwise of fabA on the Escherichia coli map. Cotransductional frequencies of 31.3% were obtained between sul and pyrD, and frequencies of 82% were obtained between sul and fabA. Also, the mucoid phenotype of K-12 lon strains grown on minimal glucose agar plates at 37 C was not significantly effected in sul derivatives. No differences between the sul of Escherichia coli B/r and that of K-12 derivatives with regard to map location or effect on mucoid production were observed.  相似文献   

18.
19.
The murI gene of Escherichia coli was recently identified on the basis of its ability to complement the only mutant requiring D-glutamic acid for growth that had been described to date: strain WM335 of E. coli B/r (P. Doublet, J. van Heijenoort, and D. Mengin-Lecreulx, J. Bacteriol. 174:5772-5779, 1992). We report experiments of insertional mutagenesis of the murI gene which demonstrate that this gene is essential for the biosynthesis of D-glutamic acid, one of the specific components of cell wall peptidoglycan. A special strategy was used for the construction of strains with a disrupted copy of murI, because of a limited capability of E. coli strains grown in rich medium to internalize D-glutamic acid. The murI gene product was overproduced and identified as a glutamate racemase activity. UDP-N-acetylmuramoyl-L-alanine (UDP-MurNAc-L-Ala), which is the nucleotide substrate of the D-glutamic-acid-adding enzyme (the murD gene product) catalyzing the subsequent step in the pathway for peptidoglycan synthesis, appears to be an effector of the racemase activity.  相似文献   

20.
Production of staphylococcal enterotoxin in mixed cultures   总被引:1,自引:0,他引:1  
Two Staphylococcus aureus strains were grown in brain-heart infusion (BHI) broth and a meat medium with Bacillus cereus, Streptococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Both S. aureus strains grew well and produced enterotoxin in the presence of S. faecalis in BHI broth; however, enterotoxin production was observable in the meat medium only when the S. aureus inoculum was greater than the S. faecalis inoculum. S. aureus FRI-100 grown with B. cereus produced enterotoxin in both media only when the S. aureus inoculum was much higher than the B. cereus inoculum (10 versus 10(4) CFU), whereas S. aureus FRI-196E produced enterotoxin in both media at all inoculum combinations except in the meat medium, when the inocula of the two organisms were the same. S. aureus grown with E. coli in BHI broth produced enterotoxin at all inoculum combinations except when the E. coli inoculum was greater than the S. aureus inoculum; however, in the meat medium, enterotoxin was produced only when the S. aureus inoculum was much greater than the E. coli inoculum (10 versus 10(4) CFU), S. aureus FRI-100 grown with P. aeruginosa in either medium produced enterotoxin only when the S. aureus inoculum was much greater than the P. aeruginosa inoculum (10 versus 10(3) or 10(4) CFU). It can be concluded from these results that enterotoxin production is unlikely in mixed cultures unless the staphylococci outnumber the other contaminating organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号