首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptors for extracellular nucleotides (P2-purinoceptors) are expressed in renal glomerulus; both on mesangial and endothelial cells. In the present study we have evaluated the potential role of ATP in the regulation of glomerular contraction and relaxation. Using [3H]-inulin we measured the Glomerular Inulin Space (GIS), (that reflects mainly glomerular intracapillary volume), in the presence of ATP and its analogues e.g. 2-methylthio-ATP (P2Y-receptor agonist) and beta,gamma-methylene-ATP (P2X-receptor agonist). Incubation of the intact glomeruli with ATP or 2-methylthio-ATP or beta,gamma-methylene-ATP induced a decrease of GIS in similar magnitude as angiotensin II e.g.: about 10% of the basal value. When glomeruli were precontracted with angiotensin II it was observed that both ATP and 2-methylthio-ATP induced an increase of GIS to the basal value, similarly to atrial natriuretic factor. Furthermore, there was no relaxing effect with beta,gamma-methylene-ATP. We suggest that, these bidirectional changes of the intracapillary volume induced by the extracellular ATP may contribute to regulation of glomerular dynamics.  相似文献   

2.
Receptors for purines and pyrimidines are expressed throughout the cardiovascular system. This study investigated their functional expression in porcine isolated pancreatic arteries. Pancreatic arteries (endothelium intact or denuded) were prepared for isometric tension recording and preconstricted with U46619, a thromboxane A2 mimetic; adenosine-5′-diphosphate (ADP), uridine-5′-triphosphate (UTP) and MRS2768, a selective P2Y2 agonist, were applied cumulatively, while adenosine-5′-triphosphate (ATP) and αβ-methylene-ATP (αβ-meATP) response curves were generated from single concentrations per tissue segment. Antagonists/enzyme inhibitors were applied prior to U46619 addition. ATP, αβ-meATP, UTP and MRS2768 induced vasoconstriction, with a potency order of αβ-meATP > MRS2768 > ATP ≥ UTP. Contractions to ATP and αβ-meATP were blocked by NF449, a selective P2X1 receptor antagonist. The contraction induced by ATP, but not UTP, was followed by vasorelaxation. Endothelium removal and DUP 697, a cyclooxygenase-2 inhibitor, had no significant effect on contraction to ATP but attenuated that to UTP, indicating actions at distinct receptors. MRS2578, a selective P2Y6 receptor antagonist, had no effect on contractions to UTP. ADP induced endothelium-dependent vasorelaxation which was inhibited by MRS2179, a selective P2Y1 receptor antagonist, or SCH58261, a selective adenosine A2A receptor antagonist. The contractions to ATP and αβ-meATP were attributed to actions at P2X1 receptors on the vascular smooth muscle, whereas it was shown for the first time that UTP induced an endothelium-dependent vasoconstriction which may involve P2Y2 and/or P2Y4 receptors. The relaxation induced by ADP is mediated by P2Y1 and A2A adenosine receptors. Porcine pancreatic arteries appear to lack vasorelaxant P2Y2 and P2Y4 receptors.  相似文献   

3.
The presence of ATP in the genital tract fluid of mammals provokes questions regarding its function in the fertilization process. We investigated the effect of extracellular ATP (ATPe) on the activation of bovine spermatozoa. A signal transduction mechanism for ATP involving the receptor-mediated release of second messengers is described. Treatment of spermatozoa with ATP, uridine triphosphate (UTP), or 2-methylthio-ATP resulted in a concentration-dependent increase of acrosomal exocytosis, whereas treatment with either AMP or adenosine induced little exocytosis. This suggested that the receptor involved is of the P2 and not the P1 type. Several lines of evidence also suggest that the ATP purinoceptor is of the P2y and not the P2x type. First, the acrosome reaction was induced by the P2y-agonists ATP, UTP, or 2-methylthio-ATP, but no effects were shown by the P2x-agonists alpha,beta-methylene-ATP or beta,gamma-methylene-ATP. Second, ATP-induced acrosomal exocytosis was inhibited by the P2y antagonists, but not by the P2x antagonists. Third, enhanced Ca2+ uptake into the cells was observed with ATP and 2-methylthio-ATP, but not with beta,gamma-methylene-ATP. Additionally, ATP induced elevation of intracellular Ca2+ and cAMP, and the effect on cAMP was predominantly enhanced by including Ca2+ and the Ca2+-ionophore A23187 in the incubation medium. Extracellular ATP also activates protein kinase Calpha (PKCalpha), and the acrosome reaction, stimulated by ATPe, is inhibited by a PKC-specific inhibitor. In summary, we suggest that ATPe activates the P2 purinoceptor that elevates [Ca2+]i, which leads to PKCalpha activation and culminates in acrosomal exocytosis.  相似文献   

4.
The activation of P2-receptors has a wide range of diverse effects in many tissues. Here we show that extracellular ATP stimulates lipogenesis in adipocytes derived from the epididymal fat pads of male Wistar rats. The lipogenic effect of ATP is not susceptible to treatment of adipocytes with adenosine deaminase or an adenosine receptor antagonist. Degradation of ATP in adipocyte suspension by ectonucleotidases is slow and remaining ATP concentrations are sufficient to activate P2-receptors. ATP does not affect basal or insulin stimulated glucose transport, or basal or isoproterenol stimulated lipolysis, respectively. The lipogenic effect of ATP is mimicked by the adenine compounds, ADP, AMP, and beta,gamma-methylene-ATP, but not by other nucleotides (UTP, UDP, CTP, GTP, ITP, and diadenosine tetraphosphate), indicating that extracellular nucleotides stimulate lipogenesis via a P2-receptor. ATP and its receptor may define a signalling system in adipocytes, which regulates fat stores independently from established hormones.  相似文献   

5.
Extracellular nucleotides have been implicated in the regulation of secretory function through the activation of P2 receptors in the epithelial tissues, including tracheal epithelial cells (TECs). In this study, experiments were conducted to characterize the P2 receptor subtype on canine TECs responsible for stimulating inositol phosphate (InsP(x)) accumulation and Ca(2+) mobilization using a range of nucleotides. The nucleotides ATP and UTP caused a concentration-dependent increase in [(3)H]InsP(x) accumulation and Ca(2+) mobilization with comparable kinetics and similar potency. The selective agonists for P1, P2X, and P2Y(1) receptors, N(6)-cyclopentyladenosine and AMP, alpha,beta-methylene-ATP and beta, gamma-methylene-ATP, and 2-methylthio-ATP, respectively, had little effect on these responses. Stimulation of TECs with maximally effective concentrations of ATP and UTP showed no additive effect on [(3)H]InsP(x) accumulation. The response of a maximally effective concentration of either ATP or UTP was additive to the response evoked by bradykinin. Furthermore, ATP and UTP induced a cross-desensitization in [(3)H]InsP(x) accumulation and Ca(2+) mobilization. These results suggest that ATP and UTP directly stimulate phospholipase C-mediated [(3)H]InsP(x) accumulation and Ca(2+) mobilization in canine TECs. P2Y(2) receptors may be predominantly mediating [(3)H]InsP(x) accumulation, and, subsequently, inositol 1,4,5-trisphosphate-induced Ca(2+) mobilization may function as the transducing mechanism for ATP-modulated secretory function of tracheal epithelium.  相似文献   

6.
This study characterizes and examines the P2 receptor-mediated signal transduction pathway of a rat brain-derived type 2 astrocyte cell line, RBA-2. ATP induced Ca2+ influx and activated phospholipase D (PLD). The ATP-stimulated Ca2+ influx was inhibited by pretreating cells with P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), in a concentration-dependent manner. The agonist 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) stimulated the largest increases in intracellular Ca2+ concentrations ([Ca2+]i); ATP, 2-methylthioadenosine triphosphate tetrasodium, and ATPgammaS were much less effective, whereas UTP, ADP, alpha,beta-methylene-ATP, and beta,gamma-methylene-ATP were ineffective. Furthermore, removal of extracellular Mg2+ enhanced the ATP- and BzATP-stimulated increases in [Ca2+]i. BzATP stimulated PLD in a concentration- and time-dependent manner that could be abolished by removal of extracellular Ca2+ and was inhibited by suramin, PPADS, and oxidized ATP. In addition, PLD activities were activated by the Ca2+ mobilization agent, ionomycin, in an extracellular Ca2+ concentration-dependent manner. Both staurosporine and prolonged phorbol ester treatment inhibited BzATP-stimulated PLD activity. Taken together, these data indicate that activation of the P2X7 receptors induces Ca2+ influx and stimulates a Ca2+-dependent PLD in RBA-2 astrocytes. Furthermore, protein kinase C regulates this PLD.  相似文献   

7.
The release of Ca2+ from vesicles of heavy sarcoplasmic reticulum after its accumulation due to hydrolysis of ATP, GTP, CTP, UTP or ITP has been studied using Antipyrylazo III, a metal-chromic Ca-indicator. All the studied substrates of the Ca-pump provide Ca2+ accumulation inside the heavy sarcoplasmic reticulum vesicles, the spontaneous Ca2+ outflux rate being different for different nucleoside triphosphates. It is only ATP that provides Ca-(caffeine)-induced Ca2+ release, however AMP, ADP, beta, gamma-methylene-ATP induce Ca2+ ejection in the presence of nonadenylic nucleotides. The ruthenium red (10(-7M) inhibits the induced ejection of Ca2+ from vesicles of the heavy sarcoplasmic reticulum, but does not prevent the spontaneous release of Ca2+ in the same concentrations. A conclusion is drawn that besides Ca-channels sensitive to Ca2+ and caffeine in the presence of ATP (or to AMP, ADP, beta, gamma-methylene-ATP in the presence of nonadenylic nucleotides) and possessing high sensitivity to the ruthenium red there is another pathway for Ca2+ in the heavy reticulum membranes along which its spontaneous release occurs after the substrate exhaustion. It is supposed that this release is provided by the presence of the Ca-ATPase protein.  相似文献   

8.
Reactive oxygen species (ROS) have long been considered as toxic by-products of aerobic metabolism and appear involved in the pathogenesis of degenerative diseases. The physiological role of ROS as second messengers in cell signal transduction is, on the other hand, increasingly recognized. Here we investigated the effects of H(2)O(2) and extracellular nucleotides on calcium signalling in four osteoblastic cell lines. In the highly differentiated HOBIT cells, sensitive to nanomolar concentrations of ADP and UTP, millimolar H(2)O(2) induced oscillatory increases of the cytosolic calcium concentration followed by a steady and sustained calcium increase. Long lasting rhythmic calcium activity was induced by micromolar H(2)O(2) doses. The H(2)O(2)-induced calcium signals, due to both release from intracellular stores and influx from the extracellular milieu, were totally prevented by incubating the cells with the P2 receptor antagonist suramin or with the ATP/ADP hydrolyzing enzyme apyrase. In the osteosarcoma SaOS-2 cells micromolar H(2)O(2) failed to evoke calcium signals and millimolar H(2)O(2) induced a slowly developing calcium influx which was unaffected by suramin and apyrase. These cells responded to micromolar concentrations of ATP and ADP, but were largely insensitive to UTP. ROS 17/2.8 osteosarcoma cells were totally insensitive to ATP, ADP and UTP in keeping with the evidence that these cells lack functional purinergic receptors. In these cells, H(2)O(2) up to 1mM did not increase the cytosolic calcium concentration. In ROS/P2Y(2) cells, stably expressing the P2Y(2) receptor, spontaneous calcium oscillations were observed in 38% of the population and nanomolar concentration of extracellular ATP or UTP activated oscillations in quiescent cells. Spontaneous calcium signals were inhibited by suramin and apyrase. In these cells H(2)O(2) induced oscillatory calcium activity that was blocked by suramin and apyrase. The sensitivity of ROS/P2Y(2) cells to UTP decreased significantly in the presence of DTT, which was effective also in inhibiting spontaneous calcium oscillations. On the other hand, the membrane-impermeant thiol oxidant DTNB induced calcium oscillations that were inhibited by incubating the cells with suramin or apyrase. Since peroxide did not increase extracellular ATP in these cell lines, we propose that, in osteoblasts, mild oxidative conditions could activate purinergic signalling through the sensitization of P2Y(2) receptor.  相似文献   

9.
Extracellular nucleotides have a profound role in the regulation of the proliferation of diseased tissue. We studied how extracellular nucleotides regulate the proliferation of LXF-289 cells, the adenocarcinoma-derived cell line from human lung bronchial tumor. ATP and ADP strongly inhibited LXF-289 cell proliferation. The nucleotide potency profile was ATP = ADP = ATPgammaS > > UTP, UDP, whereas alpha,beta-methylene-ATP, beta,gamma-methylene-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, AMP and UMP were inactive. The nucleotide potency profile and the total blockade of the ATP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 clearly show that P2Y receptors, but not P2X receptors, control LXF-289 cell proliferation. Treatment of proliferating LXF-289 cells with 100 microm ATP or ADP induced significant reduction of cell number and massive accumulation of cells in the S phase. Arrest in S phase is also indicated by the enhancement of the antiproliferative effect of ATP by coapplication of the cytostatic drugs cisplatin, paclitaxel and etoposide. Inhibition of LXF-289 cell proliferation by ATP was completely reversed by inhibitors of extracellular signal related kinase-activating kinase/extracellular signal related kinase 1/2 (PD98059, U0126), p38 mitogen-activated protein kinase (SB203508), phosphatidylinositol-3-kinase (wortmannin), and nuclear factor kappaB1 (SN50). Western blot analysis revealed transient activation of p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, and nuclear factor kappaB1 and possibly new formation of p50 from its precursor p105. ATP-induced attenuation of LXF-289 cell proliferation was accompanied by transient translocation of p50 nuclear factor kappaB1 and extracellular signal-related kinase 1/2 to the nucleus in a similar time period. In summary, inhibition of LXF-289 cell proliferation is mediated via P2Y receptors by activation of multiple mitogen-activated protein kinase pathways and nuclear factor kappaB1, arresting the cells in the S phase.  相似文献   

10.
The influence of ATP on complex formation of phosphorylase kinase (PhK) with glycogen in the presence of Ca(2+) and Mg(2+) has been studied. The initial rate of complex formation decreases with increasing ATP concentration, the dependence of the initial rate on the concentration of ATP having a cooperative character. Formation of the complex of PhK with glycogen in the presence of ATP occurs after a lag period, which increases with increasing ATP concentration. The dependence of the initial rate of complex formation (v) on the concentration of non-hydrolyzed ATP analogue, beta,gamma-methylene-ATP, follows the hyperbolic law. A correlation between PhK-glycogen complex formation and (32)P incorporation catalyzed by PhK itself and by the catalytic subunit of cAMP-dependent protein kinase has been shown. For ADP (the product and allosteric effector of the PhK reaction) the dependence of v on ADP concentration has a complicated form, probably due to the sequential binding of ADP at two allosteric sites on the beta subunit and the active site on the gamma subunit.  相似文献   

11.
ATP stimulated a rapid and dose-dependent formation of inositol polyphosphates in rat glomerular mesangial cells. In parallel there was a 80% increase in 1, 2-diacylglycerol (DAG) after 15 s upon stimulation with ATP. The rank order of potency of a series of ATP and ADP analogues for stimulation of inositol trisphosphate (InsP3) formation was ATP greater than ATP gamma S greater than beta gamma-methylene-ATP greater than beta gamma-imido-ATP greater than ADP, while ADP beta S, AMP, adenosine and GTP were inactive, indicating the presence of P2y-purinergic receptors. ATP also stimulated a marked synthesis of prostaglandin E2 (PGE2). The rank order of potency of different ATP and ADP analogues was identical to that of InsP3 generation. Pre-treatment of the cells with pertussis toxin strongly attenuated ATP-induced formation of InsP3 and DAG. Short-term (10 min) pre-treatment of the cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent activator of protein kinase C, produced a dose-dependent inhibition of the ATP-stimulated InsP3 generation. Furthermore, inhibition of protein kinase C by the potent inhibitor staurosporin, or downregulation of protein kinase C by longterm (24 h) incubation of the cells with TPA, resulted in an enhanced formation of InsP3 towards a stimulation with ATP.  相似文献   

12.
Extracellular purines and pyrimidines have major effects on cardiac rhythm and contraction. ATP/UTP are released during various physiopathological conditions, such as ischemia, and despite degradation by ectonucleotidases, their interstitial concentrations can markedly increase, a fact that is clearly associated with arrhythmia. In the present whole cell patch-clamp analysis on ventricular cardiomyocytes isolated from various mammalian species, ATP and UTP elicited a sustained, nonselective cationic current, I(ATP). UDP was ineffective, whereas 2'(3')-O-(4-benzoylbenzoyl)-ATP was active, suggesting that P2Y(2) receptors are involved. I(ATP) resulted from the binding of ATP(4-) to P2Y(2) purinoceptors. I(ATP) was maintained after ATP removal in the presence of guanosine 5'-[gamma-thio]triphosphate and was inhibited by U-73122, a PLC inhibitor. Single-channel openings are rather infrequent under basal conditions. ATP markedly increased opening probability, an effect prevented by U-73122. Two main conductance levels of 14 and 23 pS were easily distinguished. Similarly, in fura-2-loaded cardiomyocytes, Mn(2+) quenching and Ba(2+) influx were significant only in the presence of ATP or UTP. Adult rat ventricular cardiomyocytes expressed transient receptor potential channel TRPC1, -3, -4, and -7 mRNA and the TRPC3 and TRPC7 proteins that coimmunoprecipitated. Finally, the anti-TRPC3 antibody added to the patch pipette solution inhibited I(ATP). In conclusion, activation of P2Y(2) receptors, via a G protein and stimulation of PLCbeta, induces the opening of heteromeric TRPC3/7 channels, leading to a sustained, nonspecific cationic current. Such a depolarizing current could induce cell automaticity and trigger the arrhythmic events during an early infarct when ATP/UTP release occurs. These results emphasize a new, potentially deleterious role of TRPC channel activation.  相似文献   

13.
Human neutrophils and HL-60 leukaemic cells possess an NADPH oxidase which catalyses superoxide (O2-) formation and is activated by the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe). In dibutyryl cyclic AMP-differentiated HL-60 cells, ATP and UTP in the presence of cytochalasin B activated O2- formation with EC50 values of 5 microM and efficacies amounting to 30% of that of fMet-Leu-Phe. The potency order of purine nucleotides in activating O2- generation was ATP = adenosine 5'-O-(3-thiotriphosphate) greater than ITP greater than dATP = ADP. Pyrimidine nucleotides activated NADPH oxidase in the potency order UTP greater than dUTP greater than CTP = TTP = UDP. Pertussis toxin completely prevented activation of NADPH oxidase by fMet-Leu-Phe and UTP, whereas the effect of ATP was only partially inhibited. ATP and UTP enhanced O2- generation induced by fMet-Leu-Phe by up to 8-fold, and primed the cells to respond to non-stimulatory concentrations of fMet-Leu-Phe. Activation of NADPH oxidase by UTP but not by ATP was inhibited by various activators of adenylate cyclase. In dimethyl sulphoxide-differentiated HL-60 cells and in human neutrophils, ATP and UTP per se did not activate NADPH oxidase, but they potentiated the effect of fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via purino- and novel pyrimidinoceptors respectively, which are coupled to guanine nucleotide-binding proteins leading to the activation of NADPH oxidase. As ATP and UTP are released from cells under physiological and pathological conditions, these nucleotides may play roles as intercellular signal molecules in the activation of O2- formation.  相似文献   

14.
Fura-2 imaging of purinergic stimulation of non-differentiated neuronal human SH-SY5Y cells resulted in a rapid elevation in intracellular Ca2+ ([Ca2+]i) that was dependent on extracellular Ca2+. The rank order of agonists (200 micro m) was as follows: 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP) > ATP4- > ATP; whereas 2-(methylthio)-ATP, ADP, UTP and alpha,beta-methylene-ATP and beta,gamma-methylene-ATP were ineffective. The response to BzATP was inhibited by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic-acid (PPADS, 1 micro m), 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl)-4-phenylpiperazine (KN-62, 100 nm) and 8-(3-benzamido-4-4-methylbenzamido)-naphthalene-1,3,5-trisulfonic-acid (suramin, 200 micro m). The presence of a P2X7 receptor was confirmed by western blot studies using anti-P2X7. EC50 for BzATP was 212 +/- 6 micro m. BzATP > 30 micro m induced an initial, transient increase in [Ca2+]i before a plateau level was reached. BzATP < 30 micro m only produced a monophasic increase to the plateau level. The transient phase was reduced by the introduction of nimodipine (3 micro m) and to a smaller degree by omega-conotoxin GVIA (1 micro m) despite an almost equal presence of L and N-type Ca2+-channels. In whole-cell voltage-clamp studies at - 90 mV, BzATP (300 micro m) produced a fast activating inward current with a similar pharmacology as observed with Fura-2 imaging. Current clamp studies showed a dose-dependent depolarization to BzATP and ATP4-. BzATP also triggered transmitter release. Thus, the human neuronal SH-SY5Y cell line expresses a functional P2X7 receptor coupled to activation of Ca2+-channels.  相似文献   

15.
The purinergic regulation of ciliary activity was studied using small, continuously superfused explants of human nasal epithelium. The P2Y(2) purinoceptor (P2Y(2)-R) was identified as the major purinoceptor regulating ciliary beat frequency (CBF); UTP (EC(50) = 4.7 microM), ATP, and adenosine-5'-O-(3-thiotriphosphate) elicited similar maximal responses, approximately twofold over baseline. ATP, however, elicited a post-peak sustained plateau in CBF (1.83 +/- 0.1-fold), whereas the post-peak CBF response to UTP declined over 15 min to a low-level plateau (1.36 +/- 0.16-fold). UDP also stimulated ciliary beating, probably via P2Y(6)-R, with a maximal effect approximately one-half that elicited by P2Y(2)-R stimulation. Not indicated were P2Y(1)-R-, P2Y(4)-R-, or P2Y(11)-R-mediated effects. A(2B)-receptor agonists elicited sustained responses in CBF approximately equal to those from UTP/ATP [5'-(N-ethylcarboxamido)adenosine, EC(50) = 0.09 microM; adenosine, EC(50) = 0.7 microM]. Surprisingly, ADP elicited a sustained stimulation in CBF. The ADP effect and the post-peak sustained portion of the ATP response in CBF were inhibited by the A(2)-R antagonist 8-(p-sulfophenyl)theophylline. Hence, ATP affects ciliary activity through P2Y(2)-R and, after an apparent ectohydrolysis to adenosine, through A(2B)AR.  相似文献   

16.
17.
The purine nucleotide ATP mediates pulmonary vasodilation at birth by stimulation of P2Y purine receptors in the pulmonary circulation. The specific P2Y receptors in the pulmonary circulation and the segmental distribution of their responses remain unknown. We investigated the effects of purine nucleotides, ATP, ADP, and AMP, and pyrimidine nucleotides, UTP, UDP, and UMP, in juvenile rabbit pulmonary arteries for functional characterization of P2Y receptors. We also studied the expression of P2Y receptor subtypes in pulmonary arteries and the role of nitric oxide (NO), prostaglandins, and cytochrome P-450 metabolites in the response to ATP. In conduit size arteries, ATP, ADP, and AMP caused greater relaxation responses than UTP, UDP, and UMP. In resistance vessels, ATP and UTP caused comparable vasodilation. The response to ATP was attenuated by the P2Y antagonist cibacron blue, the NO synthase antagonist N(omega)-nitro-l-arginine methyl ester (l-NAME), and the cytochrome P-450 inhibitor 17-octadecynoic acid but not by the P2X antagonist alpha,beta-methylene ATP or the cyclooxygenase inhibitor indomethacin in conduit arteries. In the resistance vessels, l-NAME caused a more complete inhibition of the responses to ATP and UTP. Responses to AMP and UMP were NO and endothelium dependent, whereas responses to ADP and UDP were NO and endothelium independent in the conduit arteries. RT-PCR showed expression of P2Y(1), P2Y(2), and P2Y(4) receptors, but not P2Y(6) receptors, in lung parenchyma, pulmonary arteries, and pulmonary artery endothelial cells. These data suggest that distinct P2Y receptors mediate the vasodilator responses to purine and pyrimidine nucleotides in the juvenile rabbit pulmonary circulation. ATP appears to cause NO-mediated vasodilation predominantly through P2Y2 receptors on endothelium.  相似文献   

18.
We have examined the expression of mRNA for several P2Y nucleotide receptors by northern blot analysis in purified type 1 cerebellar astrocyte cultures. These results suggest that different P2Y subtypes could be responsible for ATP metabotropic calcium responses in single type 1 astrocytes. To identify these subtypes we have studied the pharmacological profile of ATP calcium responses using fura-2 microfluorimetry. All tested astrocytes responded to ATP and UTP stimulations evoking similar calcium transients. Most astrocytes also responded to 2-methylthioATP and ADP challenges. The agonist potency order was 2-methylthioATP > ADP > ATP = UTP. Cross-desensitization experiments carried out with ATP, UTP, and 2-methylthioATP showed that 2-methylthioATP and UTP interact with different receptors, P2Y(1) and P2Y(2) or P2Y(4). In a subpopulation of type 1 astrocytes, ATP prestimulation did not block UTP responses, and UDP elicited clear intracellular Ca(2+) concentration responses at very low concentrations. 2-MethylthioATP and UTP calcium responses exhibited different sensitivity to pertussis toxin and different inhibition patterns in response to P2 antagonists. The P2Y(1)-specific antagonist N:(6)-methyl-2'-deoxyadenosine 3', 5'-bisphosphate (MRS 2179) specifically blocked the 2-methylthio-ATP responses. We can conclude that all single astrocytes coexpressed at least two types of P2Y metabotropic receptors: P2Y(1) and either P2Y(2) or P2Y(4) receptors. Moreover, 30-40% of astrocytes also coexpressed specific pyrimidine receptors of the P2Y(6) subtype, highly selective for UDP coupled to pertussis-toxin insensitive G protein.  相似文献   

19.
Phentolamine (10(-5) M) and an inhibitor of the lipoxygenase pathway, nordihydroguaiaretic acid (N. D. G. A.; 8 10(-6) M) antagonized the ATP induced contraction but not antagonized the UTP induced contraction on both rat tail artery and dog saphenous vein. We conclude that the receptors to ATP are distinct from receptors to UTP and that the P2 purinoceptors are an heterogeneous group.  相似文献   

20.
In the breast tumor cell line MCF-7, extracellular nucleotides induce transient elevations in intracellular calcium concentration ([Ca(2+)](i)). In this study we show that stimulation with ATP or UTP sensitizes MCF-7 cells to mechanical stress leading to an additional transient Ca(2+) influx. ATP> or =ATPgamma-S> or =UTP>ADP=ADPbeta-S elevate [Ca(2+)](i), proving the presence of P2Y(2)/P2Y(4) purinergic receptor subtypes. In addition, cell stimulation with ATP, ATPgamma-S or UTP but not ADPbeta-S induced the phosphorylation of ERK1/2, p38 and JNK1/2 mitogen activated protein kinases (MAPKs). The use of Gd(3+), La(3+) or a Ca(2+)-free medium, inhibited ATP-dependent stress activated Ca(2+) (SAC) influx, but had no effect on MAPK phosphorylation. ATP-induced activation of MAPKs was diminished by two PI-PLC inhibitors and an IP(3) receptor antagonist. These results evidence an ATP-sensitive SAC influx in MCF-7 cells and indicate that phosphorylation of MAPKs by ATP is dependent on PI-PLC/IP(3)/Ca(2+)(i) release but independent of SAC influx in these cells, differently to other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号