首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The flash-induced electrochromic shift, measured by the amplitude of the rapid absorbance increase at 518 nanometers (ΔA518), was used to determine the amount of charge separation within photosystems II and I in spinach (Spinacia oleracea L.) leaves. The recovery time of the reaction centers was determined by comparing the amplitudes of ΔA518 induced by two flashes separated by a variable time interval. The recovery of the ΔA518 on the second flash revealed that 20% of the reaction centers exhibited a recovery half-time of 1.7 ± 0.3 seconds, which is 1000 times slower than normally active reaction centers. Measurements using isolated thylakoid membranes showed that photosystem I constituted 38% of the total number of reaction centers, and that the photosystem I reaction centers were nearly fully active, indicating that the slowly turning over reaction centers were due solely to photosystem II. The results demonstrate that in spinach leaves approximately 32% of the photosystem II complexes are effectively inactive, in that their contribution to energy conversion is negligible. Additional evidence for inactive photosystem II complexes in spinach leaves was provided by fluorescence induction measurements, used to monitor the oxidation kinetics of the primary quinone acceptor of photosystem II, QA, after a short flash. The measurements showed that in a fraction of the photosystem II complexes the oxidation of QA was slow, displaying a half-time of 1.5 ± 0.3 seconds. The kinetics of QA oxidation were virtually identical to the kinetics of the recovery of photosystem II determined from the electrochromic shift. The key difference between active and inactive photosystem II centers is that in the inactive centers the oxidation rate of QA is slow compared to active centers. Measurements of the electrochromic shift in detached leaves from several different species of plants revealed a significant fraction of slowly turning over reaction centers, raising the possibility that reaction centers that are inefficient in energy conversion may be a common feature in plants.  相似文献   

2.
P Joliot  A Verméglio  A Joliot 《Biochemistry》1990,29(18):4355-4361
Light-induced oxidation of the primary electron donor P and of the secondary donor cytochrome c2 was studied in whole cells of Rhodospirillum rubrum in the presence of myxothiazole to slow down their reduction. 1. The primary and secondary electron donors are close to thermodynamic equilibrium during continuous illumination when the rate of the electron transfer is light-limited. This implies a long-range thermodynamic equilibration involving the diffusible cytochrome c2. A different behavior is observed with Rhodobacter sphaeroides R26 whole cells, in which the cytochrome c2 remains trapped within a supercomplex including reaction centers and the cytochrome b/c complex [Joliot, P., et al. (1989) Biochim. Biophys. Acta 975, 336-345]. 2. Under weak flash excitation, the reduction kinetics of the photooxidized primary donor are nearly exponential with a half-time in the hundred microseconds time range. 3. Under strong flash excitation, the reduction of the photooxidized primary donor follows a second-order kinetics. About half of the photooxidized primary donor is reduced in a few milliseconds while the remainder stays oxidized for hundreds of milliseconds despite an excess of secondary donors in their reduced form. The flash intensity dependence of the amplitude of the slow phase of P+ reduction is proportional to the square of the fraction of reaction centers that have undergone a charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The fluorescence decay of chlorophyll in spinach thylakoids was measured as a function of the degree of closure of Photosystem II reaction centers, which was set for the flowed sample by varying either the preillumination by actinic light or the exposure of the sample to the exciting pulsed laser light. Three exponential kinetic components originating in Photosystem II were fitted to the decays; a fourth component arising from Photosystem I was determined to be negligible at the emission wavelength of 685 nm at which the fluorescence decays were measured. Both the lifetimes and the amplitudes of the components vary with reaction center closure. A fast (170–330 ps) component reflects the trapping kinetics of open Photosystem II reaction centers capable of reducing the plastoquinone pool; its amplitude decreases gradually with trap closure, which is incompatible with the concept of photosynthetic unit connectivity where excitation energy which encounters a closed trap can find a different, possibly open one. For a connected system, the amplitude of the fast fluorescence component is expected to remain constant. The slow component (1.7–3.0 ns) is virtually absent when the reaction centers are open, and its growth is attributable to the appearance of closed centers. The middle component (0.4–1.7 ns) with approximately constant amplitude may originate from centers that are not functionally linked to the plastoquinone pool. To explain the continuous increase in the lifetimes of all three components upon reaction center closure, we propose that the transmembrane electric field generated by photosynthetic turnover modulates the trapping kinetics in Photosystem II and thereby affects the excited state lifetime in the antenna in the trap-limited case.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PQ plastoquinone - PSI and PSII Photosystem I and II - QA and QB primary and secondary quinone acceptor of PSII  相似文献   

4.
The rise kinetics of the absorption changes induced at 515 nm and 480 nm by a flash were studied using two types of xenon flashes of different durations. The ‘slow’ rise of the absorption change (t12 = 15–20 μs) observed by Cox and Delosme (1978 C.R. Acad. Sci. (Paris) Sér. D 282, 775–778) and Joliot P., Delosme, R. and Joliot, A. ((1977) Biochim. Biophys. Acta 459, 47–57) was found to be due to double hits occurring in the reaction centers of System I during the flash.The turnover kinetics of the reaction centers of System I after a short flash were studied by a double flash method. They are in agreement with a second order reaction between P+-700 and its electron donor.  相似文献   

5.
Chlorophyll fluorescence decay kinetics was measured in sulfur deprived cells of green alga Chlamydomonas reinhardtii with a home made picosecond fluorescence laser spectrometer. The measurements were carried out on samples either shortly adapted to the dark (‘Fo conditions’) or treated to reduce Qa (‘Fm conditions’). Bi-exponential fitting of decay kinetics was applied to distinguish two components one of them related to energy trapping (fast component) and the other to charge stabilization and recombination in PS 2 reaction centers (slow component). It was found that the slow component yield increased by 2.0 and 1.2 times when measured under ‘Fo’ and ‘Fm conditions’, respectively, in sulfur deprived cells as compared to control ones. An additional rapid rise of the slow component yield was observed when incubation was carried out in a sealed bioreactor and cell culture turned to anaerobic conditions. The obtained results strongly indicate the existence of the redox control of PS 2 activity during multiphase adaptation of C. reinhardtii to sulfur deficiency stress. Probable mechanisms responsible for the observed increased recombinant fluorescence yield in starved cells are discussed.  相似文献   

6.
Ted Mar  John Brebner  Guy Roy 《BBA》1975,376(2):345-353
Induction curves of the delayed light emission in spinach chloroplasts were studied by measuring the decay kinetics after each flash of light. This study differs from previous measurements of the induction curves where only the intensities at one set time after each flash of light were recorded. From the decay kinetics after each flash of light, the induction curves of the delayed light emission measured 2 ms after a flash of light were separated into two components: one component due to the last flash only and one component due to all previous flashes before the last one. On comparing the delayed light induction curves of the two components with the fluorescence induction curves in chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and in chloroplasts treated with hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the component due to the last flash only is found to be dependent on the concentration of open reaction centers and the component due to all previous flashes except the last is dependent on the concentration of closed reaction centers. This implies that the yield of the fast decaying component of the delayed light emission is dependent on the concentration of open reaction centers and the yield of the slow decaying component is dependent on the concentration of closed reaction centers.  相似文献   

7.
Until recently, polarographic methods for measuring the time course of transient changes in the rate of oxygen consumption (ΔQO2) have been applied only to tissue preparations containing thousands of cells. Here, we describe ΔQO2 measurements on the lateral ocellus of the barnacle (Balanus eburneus) which contains only three photoreceptor cells. The decrement of partial pressure of oxygen (ΔPO2) elicited by an 80 ms flash of light was measured near the cells with a microelectrode and the ΔQO2 was calculated from the ΔPO2 using a model of diffusion with spherical symmetry. As shown by mathematical simulation, the exact shape of the preparation is not crucial for our measurements of the time course of the ΔQO2. For a given ΔQO2, the model describes correctly the attenuation of the ΔPO2 measured at increased distances from the preparation. To know more about the mechanisms controlling the ΔQO2, we compared it with the electrical response of the photoreceptor cells: both responses have a similar spectral dependence, but only the ΔQO2 was abolished by a 10-min exposure to 50 μM dinitrophenol or to 3 mM amytal. We conclude that the ΔQO2 reflects an increase in mitochondrial respiration and that it is initiated by the phototransformation of rhodopsin, as was already found in the honeybee drone retina (Dimitracos and Tsacopoulos, 1985; Jones and Tsacopoulos, 1987).  相似文献   

8.
The binding of horse heart mitochondrial cytochrome c to isolated reaction centers from Rhodopseudomonas sphaeroides is described. The kinetics of photooxidation of cytochrome c following a short actinic flash is compared to the expected binding state of the cytochrome at various concentrations and at different ionic strengths. At low ionic strength a very tight binding site (KD10-8 M) is apparent which is nonfunctional with respect to electron donation to the bound reaction center. This tightly bound cytochrome can react with another reaction center in a diffusion limited, second order process. A weaker binding site (KD0.3 · 10-6 M) is also boserved which is associated with rapid, first order electron transfer from cytochrome to reaction center. Both binding processes are weakened in the presence of salt and there is no detectable binding in 100 mM NaCl. Under such conditions cytochrome oxidation is entirely a diffusional, second order process. However, analysis of the flash intensity dependence of the extent of cytochrome oxidation, by the method of van Grondelle (van Grondelle, R. (1978) Ph.D. Thesis, State University, Leiden) indicated that the cytochrome was not freely mobile even in 100 mM NaCl, at least in the sense that reduced cytochrome only slowly dissociates from unactivated reaction centers. An overall kinetic/equilibrium scheme for cytochrome c binding and photooxidation by reaction centers is presented. This is very similar to that described earlier for cytochrome c2 (Overfield, R.E., Wraight, C.A. and DeVault, D. (1979) FEBS Lett. 105, 137–142), but the tight binding site and associated diffusion controlled oxidation is unique to cytochrome c.Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

9.
The functioning of alternative routes of photosynthetic electron transport was analyzed from the kinetics of dark reduction of P700+ , an oxidized primary donor of PSI, in barley (Hordeum vulgare L.) leaves irradiated by white light of various intensities. Redox changes of P700 were monitored as absorbance changes at 830 nm using PAM 101 specialized device. Irradiation of dark-adapted leaves caused a gradual P700+ accumulation, and the steady-state level of oxidized P700 increased with intensity of actinic light. The kinetics of P700+ dark reduction after a pulse of strong actinic light, assayed from the absorbance changes at 830 nm, was fitted by a single exponential term with a halftime of 10–12 ms. Two slower components were observed in the kinetics of P700+ dark reduction after leaf irradiation by attenuated actinic light. The contribution of slow components to P700+ reduction increased with the decrease in actinic light intensity. Two slow components characterized by halftimes similar to those observed after leaf irradiation by weak white light were found in the kinetics of dark reduction of P700+ oxidized in leaves with far-red light specifically absorbed by PSI. The treatment of leaves with methyl viologen, an artificial PSI electron acceptor, significantly accelerated the accumulation of P700+ under light. At the same time, the presence of methyl viologen, which inhibits ferredoxin-dependent electron transport around PSI, did not affect three components of the kinetics of P700+ dark reduction obtained after irradiations with various actinic light intensities. It was concluded that some part of PSI reaction centers was not reduced by electron transfer from PSII under weak or moderate intensities of actinic light. In this population of PSI centers, P700+ was reduced via alternative electron transport routes. Insensitivity of the kinetics of P700+ dark reduction to methyl viologen evidences that the input of electrons to PSI from the reductants (NADPH or NADH) localized in the chloroplast stroma was effective under those light conditions.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 5–11.Original Russian Text Copyright © 2005 by Bukhov, Egorova.  相似文献   

10.
Fischer E  Lüttge U 《Plant physiology》1980,65(5):1004-1008
Accumulation of 14C-labeled glycine and microelectrode techniques were employed to study glycine transport and the effect of glycine on the membrane potential (Δψ) in Lemna gibba G1. Evidence is presented that two processes, a passive uptake by diffusion and a carrier-mediated uptake, are involved in glycine transport into Lemna cells. At the onset of active glycine uptake the component of Δψ which depended on metabolism was decreased. The depolarized membrane repolarized in the presence of glycine. This glycine-induced depolarization followed a saturation curve with increasing glycine concentration which corresponded to carrier-mediated glycine influx kinetics. The transport of glycine was correlated with the metabolically dependent component of Δψ. It is suggested (a) that the transient change in Δψ reflects the operation of an H+-glycine cotransport system driven by an electrochemical H+ gradient; and (b) that this system is energized by an active H+ extrusion. Therefore the maximum depolarization of the membrane consequently depended on both the rate of glycine uptake and the activity of the proton extrusion pump.  相似文献   

11.
We study the regulating mechanism of p53 on the properties of cell cycle dynamics in the light of the proposed model of interacting p53 and cell cycle networks via p53. Irradiation (IR) introduce to p53 compel p53 dynamics to suffer different phases, namely oscillating and oscillation death (stabilized) phases. The IR induced p53 dynamics undergo collapse of oscillation with collapse time Δt which depends on IR strength. The stress p53 via IR drive cell cycle molecular species MPF and cyclin dynamics to different states, namely, oscillation death, oscillations of periods, chaotic and sustain oscillation in their bifurcation diagram. We predict that there could be a critical Δt c induced by p53 via IR c, where, if Δt〈Δt c the cell cycle may come back to normal state, otherwise it will go to cell cycle arrest (apoptosis).  相似文献   

12.
We have used the desiccation-tolerant lichen Flavoparmelia caperata, containing the green algal photobiont Trebouxia gelatinosa, to examine H/D isotope effects in Photosystem II in vivo. Artifact-free H/D isotope effects on both PSII primary charge separation and water oxidation yields were determined as a function of flash rate from chlorophyll-a variable fluorescence yields. Intact lichens could be reversibly dehydrated/re-hydrated with H2O/D2O repeatedly without loss of O2 evolution, unlike all isolated PSII preparations. Above a threshold flash rate, PSII charge separation decreases sharply in both D2O and H2O, reflecting loss of excitation migration and capture by PSII. Changes in H/D coordinates further slow charge separation in D2O (?23% at 120?Hz), attributed to reoxidation of the primary acceptor QA?. At intermediate flash rates (5–50?Hz) D2O decreases water oxidation efficiency (O2 evolution) by ?2–5%. No significant isotopic difference is observed at slow flash rates (<5?Hz) where charge recombination dominates. Slower D2O diffusion, changes in hydrogen bonding networks, and shifts in the pKa's of ionizable residues may all contribute to these systematic variations of H/D isotope effects. Lichens' reversible desiccation tolerance allows highly reproducible H/D exchange kinetics in PSII reactions to be studied in vivo for the first time.  相似文献   

13.
Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-β-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNRL) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNRL accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNRL and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.  相似文献   

14.
Li ZC  Bush DR 《Plant physiology》1990,94(1):268-277
Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline. Although each symport was relatively specific for a given group of amino acids, each system exhibited some crossover specificity for amino acids in other groups.  相似文献   

15.
DNA triplexes are formed by both isomorphic (structurally alike) and non-isomorphic (structurally dissimilar) base triplets. It is espoused here that (i) the base triplet non-isomorphism may be articulated in structural terms by a residual twist (Δt°), the angle formed by line joining the C1′…C1′ atoms of the adjacent Hoogsteen or reverse Hoogsteen (RH) base pairs and the difference in base triplet radius (Δr Å), and (ii) their influence on DNA triplex is largely mechanistic, leading to the prediction of a high (t + Δt)° and low (t − Δt)° twist at the successive steps of Hoogsteen or RH duplex of a parallel or antiparallel triplex. Efficacy of this concept is corroborated by molecular dynamics (MD) simulation of an antiparallel DNA triplex comprising alternating non-isomorphic G*GC and T*AT triplets. Conformational changes necessitated by base triplet non-isomorphism are found to induce an alternating (i) high anti and anti glycosyl and (ii) BII and an unusual BIII conformation resulting in a zigzag backbone for the RH strand. Thus, base triplet non-isomorphism causes DNA triplexes into exhibiting sequence-dependent non-uniform conformation. Such structural variations may be relevant in deciphering the specificity of interaction with DNA triplex binding proteins. Seemingly then, residual twist (Δt°) and radial difference (Δr Å) suffice as indices to define and monitor the effect of base triplet non-isomorphism in nucleic acid triplexes.  相似文献   

16.
17.
Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10 s for all actinic flash energies (the maximum energy of 7.5 × 1016 photons/(cm2 flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4 × 1014 photons/(cm2 flash) to 7.5 × 1016 photons/(cm2 flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (3Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe) and P680+ by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant.The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the higher plant) under varying illumination conditions.  相似文献   

18.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

19.
20.
The temperature dependence of charge recombination from the P+QA- and from the P+QB- states produced by a flash was studied in reaction centers isolated from the photosynthetic thermophilic bacterium Chloroflexus aurantiacus. P designates the primary electron donor; QA and QB the primary and secondary quinone electron acceptors respectively. In QB-depleted reaction centers the rate constant (kAP) for P+QA- recombination was temperature independent between 0-50 degrees C (17.6 +/- 0.7 s-1 at pH 8 and pH 10). The same value was obtained in intact membranes in the presence of o-phenanthroline. Upon lowering the temperature from 250 K to 160 K, kAP increased by a factor of two and remained constant down to 80 K. The overall temperature dependence of kAP was consistent with an activationless process. Ubiquinone (UQ-3) and different types of menaquinone were used for QB reconstitution. In UQ-3 reconstituted reaction centers charge recombination was monoexponential (rate constant k = 0.18 +/- 0.03 s-1) and temperature independent between 5-40 degrees C. In contrast, in menaquinone-3- and menaquinone-4-reconstituted reaction centers P+ rereduction following a flash was markedly biphasic and temperature dependent. In menaquinone-6-reconstituted reaction centers a minor contribution from a third kinetic phase corresponding to P+QA- charge recombination was detected. Analysis of these kinetics and of the effects of the inhibitor o-phenanthroline at high temperature suggest that in detergent suspensions of menaquinone-reconstituted reaction centers a redox reaction removing electrons from the quinone acceptor complex competes with charge recombination. Instability of the semiquinone anions is more pronounced when QB is a short-chain menaquinone. From the temperature dependence of P+ decay the activation parameters for the P+QB- recombination and for the competing side oxidation of the reduced menaquinone acceptor have been derived. For both reactions the activation enthalpies and entropies change markedly with menaquinone chain length but counterbalance each other, resulting in activation free energies at ambient temperature independent of the menaquinone tail. When reaction centers are incorporated into phospholipid vesicles containing menaquinone-8 a temperature-dependent, monophasic, o-phenanthroline-sensitive recombination from the P+QB- state is observed, which is consistent with the formation of stable semiquinone anions. This result seems to indicate a proper QB functioning in the two-subunit reaction center isolated from Chlorflexus aurantiacus when the complex is inserted into a lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号