首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that the home-cage maternal behavior of rats which become maternal after daily pup exposure (sensitization) is almost indistinguishable from that of lactating mothers, but that sensitized and lactating rats can be distinguished by their pup-retrieval performance in a T-maze extension of the home cage. The present study explored this difference further. Postpartum mothers which could not suckle due to prior nipple removal (thelectomy) retrieved as well, if not better, than intact controls in the T-maze. Hormonal induction of maternal behavior (in ? 3 days) was carried out by hysterectomy-ovariectomy plus 100 μg/kg estradiol benzoate; the performance of these females was similar to that of the postpartum groups. In contrast, only a small percentage of the sensitized mothers retrieved in the T-maze, whether the latency to onset of their maternal behavior was long (4–10 days) or short (? 3 days). Thus, hormonal factors associated with pregnancy and/or parturition, but not suckling stimulation, may facilitate T-maze retrieval of pups. The possible ethological significance of the T-maze test as a measure of maternal responsiveness is discussed.  相似文献   

2.
Anabolic androgenic steroids (AAS) have been linked to indiscriminant and unprovoked aggression and violence. We employed a brief tail pinch to examine the effects of different AAS on intermale aggression in gonadally intact male rats in response to a mild physical provocation. Animals received 5 mg/kg testosterone propionate (TP), nandrolone (ND), or stanozolol (ST) 5 days/week. Controls received vehicle injections. After 12 weeks, rats were tested for aggression while treatments continued. Animals were paired with either gonadally intact or castrated opponents and were tested in the subject rat's home cage, the opponents's home cage, and a neutral cage. Aggression was tested during tail pinch of the subject rat and during tail pinch of the opponent rat. In TP-treated males, tail pinch significantly enhanced aggression in all social and environmental conditions compared to intact controls. TP treatment also significantly enhanced aggression when the opponents were tail pinched. Tail pinch did not increase aggression in ND-treated males, and aggression was significantly lower than controls in ST-treated males. As expected, cell nuclear androgen receptor binding was significantly elevated by the high dose of TP. Our results show that while AAS alone does not induce the indiscriminate and unprovoked aggression characteristic of 'roid rage, TP heightens the animals sensitivity to  相似文献   

3.
Recent studies have shown that chronic gonadectomy increases the density of dopaminergic axons in prefrontal but not sensorimotor cortices in adult male rats. Since supranormal prefrontal cortical dopamine stimulation is known to impair rats' performance in T-maze delayed alternation paradigms, we tested whether long-term gonadectomy might also impair T-maze performance. For comparison, sensorimotor functions were also assessed. Adult male rats were gonadectomized and placebo-, estradiol-, or testosterone propionate-treated or were sham operated and placebo-treated. Four weeks after surgery, the subjects were tested using a rotorod apparatus and in the acquisition of a T-maze delayed alternation paradigm. Gonadectomized placebo-treated and estradiol-treated rats took significantly longer to acquire the T-maze rule than controls, and gonadectomized, testosterone-treated rats acquired the task within the same time frame as controls. No group differences were detected in rotorod performance. Thus, chronic gonadectomy induced testosterone-sensitive, estradiol-insensitive acquisition deficits in a spatial learning task but had no demonstrable effects on the sensorimotor functions tested.  相似文献   

4.
The objective of this study was to examine the influence of androgen and of the inhibiting of aromatization of androgen to estrogen during the early neonatal period on the development of receptive (lordosis and acceptance of stimulus male mounting attempts) and proceptive (affiliation with and solicitation of stimulus males) feminine sexual behavior. Within 8 hr of birth, male rats were castrated or received subcutaneous implants of the aromatase inhibitor androst-1,4,6-triene-3, 17-dione (ATD) while females received injections of testosterone propionate (TP). At 90 days of age all treated animals and controls were tested for receptive and proceptive feminine sexual behavior. It was found that androgen present neonatally blocked proceptive as well as receptive behavior patterns in adult rats. The proceptive and receptive feminine sexual behavior patterns displayed by adult males deprived of the effects of androgen neonatally either by castration or by treatment with ATD were comparable to those of normal females.  相似文献   

5.
The effects of exogenous hormone treatment on the expression of cytochromes P450 2C7 and P450 2C11 were studied in neonatally gonadectomized and sham-operated male and female rats. Hepatic levels of cytochrome P450 2C7 were found to be two- to threefold higher in intact adult female versus male rats. Neonatal gonadectomy resulted in a reversal of the relative cytochrome P450 2C7 levels in male and female animals at maturity. Expression of this isozyme was restored in ovariectomized females by estradiol treatment. Furthermore, neonatal and/or pubertal administration of estradiol to intact male rats induced cytochrome P450 2C7 to adult female levels. On the other hand, administration of testosterone at all times examined had no effect in intact female rats, but decreased cytochrome P450 2C7 to normal levels in neonatally castrated males treated during adulthood. Neonatal testosterone treatment also increased hepatic cytochrome P450 2C7 content in both ovariectomized females and intact males. These results indicate that estrogen is required for full expression of cytochrome P450 2C7 while the effect of testosterone is ambiguous. In comparison, neonatal gonadectomy of male rats abolished the adult expression of cytochrome P450 2C11. Normal levels were restored only by treatment with testosterone during adulthood. Neonatal testosterone treatment did not induce cytochrome P450 2C11 levels in gonadectomized rats of either sex. In contrast, neonatal estrogen treatment suppressed cytochrome P450 2C11 expression in intact adult male rats to the same extent as neonatal castration. These results indicate that androgen exposure during the adult, and not the neonatal, phase is essential for full expression of cytochrome P450 2C11.  相似文献   

6.
Androgen responsiveness of the liver of the developing rat   总被引:1,自引:0,他引:1       下载免费PDF全文
The activities of the hepatic microsomal 2alpha-, 2beta-, 7alpha- and 18-hydroxylase systems active on 5alpha-[4-(14)C]androstane-3alpha,17beta-diol were studied in male and female rats which had been castrated at birth and at the age of 7, 13, 21, 27, 34, 43 and 55 days, treated for 5 days with 2mg of testosterone propionate/kg body weight and killed 6 days after castration. The 7alpha-hydroxylase system was affected very little by androgen treatment at all stages during development. On the other hand it was found that the rat liver passed through three phases during development with respect to androgen responsiveness as judged by changes in the activities of the 2alpha, 2beta- and 18-hydroxylase systems: a first phase (from the neonatal period up to about 19 days of age) with a relative androgen unresponsiveness in both male and female rats, a second phase (from about 27 to about 33 days of age) when male and female rats responded equally well to androgens and a final phase (from about 40 days of age) with a successively decreasing androgen responsiveness in female rats but with a retained responsiveness in male rats. The hypothesis is presented that neonatal imprinting of the liver by testicular androgen(s) determines the development and degree of androgen responsiveness of liver tissue in the rat.  相似文献   

7.
Sex differences in the prevalence of affective disorders might be attributable to different sex hormone milieu. The effects of short-term sex hormone deficiency on behavior, especially on anxiety have been studied in numerous animal experiments, mainly on young adult rats and mice. However, sex differences in aged animals and the effects of long-term hypogonadism are understudied. The aim of our study was to analyze sex differences in anxiety-like behavior in aged rats and to prove whether they can be attributed to endogenous sex hormone production in males. A battery of tests was performed to assess anxiety-like behavior in aged female, male and gonadectomized male rats castrated before puberty. In addition, the aged gonadectomized male rats were treated with a single injection of estradiol or testosterone or supplemented with estradiol for two-weeks. Female rats displayed a less anxious behavior than male rats in most of the conducted behavioral tests except the light-dark box. Long-term androgen deficiency decreased the sex difference in anxiety either partially (open field, PhenoTyper cage) or completely (elevated plus maze). Neither single injection of sex hormones, nor two-week supplementation of estradiol in gonadectomized aged male rats significantly affected their anxiety-like behavior in the elevated plus maze. In conclusion, our results confirm sex differences in anxiety in aged rats likely mediated by endogenous testosterone production in males. Whether long-term supplementation with exogenous sex hormones could affect anxiety-like behavior in elderly individuals remains to be elucidated.  相似文献   

8.
Previous work has shown that chronic treatment of intact, immature male rats with luteinizing hormone releasing hormone (LHRH) decreases sex accessory gland weights and results in retardation of the normal developmental increase in the ratio of serum testosterone (T)/5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-Diol) via an apparent enhancement of testicular 5 alpha-reductase or 3 alpha-hydroxysteroid oxidoreductase activities. In the present work, androgen dependent balano-preputial skinfold cleavage was significantly delayed by approximately one week in intact, immature male rats which were treated daily for two weeks with either 1.0 micrograms, 2.5 micrograms or 5.0 micrograms of LHRH during a discrete phase of pubertal development (28-41 days of age). In intact, adult (62 day old) animals which received LHRH treatments during pubertal development, serum T concentrations and sex accessory gland weights were reduced compared to control animal values. Serum 3 alpha-Diol content in the adult rats was either unaltered or increased significantly depending on the LHRH dosage employed during sexual development. Serum luteinizing hormone concentrations were not different between control and LHRH-pretreated adult rats whereas the highest dosage of LHRH employed (5.0 micrograms) during puberty resulted in a significant elevation of adult serum follicle stimulating hormone levels. It is suggested that chronic LHRH treatment of the male rat during puberty results in a perturbation in testicular androgen biosynthetic activities and an impairment of pituitary-testicular hormone feedback mechanisms which persist at least through early adulthood.  相似文献   

9.
Supraphysiologic doses (1.75-3.50 mg) of testosterone propionate (TP) administered to male rats on the day of birth and 24 h later resulted in markedly reduced serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels in adult males castrated for 16 days. These effects diminished as androgen was injected on succeeding postnatal days. Since exogenous dihydrotestosterone and testosterone were similarly effective, aromatization to estrogen is not required to elicit these effects. No build-up of either gonadotropin occurred in the pituitaries of TP-treated animals; pituitary LH content was appreciably reduced, while FSH remained unchanged. These data imply that hypophyseal synthesis and secretion of gonadotropins are curtailed in adult castrated males who have been androgenized neonatally. Pituitaries of such neonatally treated animals, however, were capable of increased secretion of LH in response to a challenge of luteinizing hormone-releasing hormone. These findings are compatible with a model in which an androgen suppressible event occurs at a suprahypophyseal level, e.g., hypothalamus or higher brain centers, in the male rat during a restricted neonatal period, which is responsible for programming the development of mechanisms involved in accumulation and secretion of gonadotropins.  相似文献   

10.
Neonatal maternal separation alters learning and memory. Glucocorticoids also modulate adult learning and memory, and neonatal maternal separation alters forebrain glucocorticoid receptor (GR) concentrations. We used eyeblink classical conditioning to assess the effect of neonatal maternal separation on associative learning. We assessed delay eyeblink conditioning, GR expression, and total neuron number in the interpositus nucleus, a critical site of plasticity in eyeblink conditioning, in adult rats that had undergone either standard animal facilities rearing, handling for 15 min, or maternal separation for either 15 or 60 min per day on postnatal days 2-14. At 2-3 months of age, delay eyeblink classical conditioning was assessed. Brains were processed for GR immunohistochemistry, and GR expression in the interpositus nucleus was assessed using a computer-based densitometry system. Neuron counts and nuclear volumes were obtained from an alternate series of thionin-stained sections. Maternal separation significantly impaired eyeblink conditioning in male but not female rats. Handling and maternal separation did not significantly affect interpositus neuron number and volume. However, prolonged maternal separation significantly increased GR expression in the posterior interpositus in males, and increases were correlated with eyeblink conditioning. In female rats, maternal separation and handling did not significantly alter interpositus neuron number, volume, or GR protein expression, and GR expression did not correlate with eyeblink conditioning. Thus, neonatal maternal separation produces adult deficits in eyeblink conditioning and alterations in GR expression in its neural substrate in a sex-dependent manner.  相似文献   

11.
Thyrotropin-releasing hormone (TRH) potentiated the monosynaptic reflex in isolated spinal cords obtained from 7- to 9-day-old rats. A concentration-dependent increase in the monosynaptic reflex was observed in spinal cords obtained from male but not from female or castrated male rats. In contrast, the magnitude of potentiation in cords from ovariectomized control female rats and in ovariectomized female rats treated with testosterone approached that seen in intact males. The results provide evidence that gender plays a prominent role in the variability of response both of humans with amyotrophic lateral sclerosis and of animal tissues to TRH. Furthermore, exposure to androgen during the neonatal period may determine the responsiveness of motoneurons to TRH. Thus the use of TRH in the treatment of amyotrophic lateral sclerosis may be more effective in males than in females.  相似文献   

12.
The purpose of the present investigation was to examine the influence of the hypothalamic-pituitary axis on the androgen regulation of the ocular secretory immune system. Studies included the following experiments: (1) Testosterone administration significantly increased the immunoglobulin A (IgA) and free secretory component (SC) levels in tears of adult, orchiectomized and sham-hypophysectomized rats, as compared with those in tears of saline-treated controls. (2) Hypophysectomy completely inhibited this androgen effect. (3) Transfer of the pituitary to under the kidney capsule in orchiectomized and hypophysectomized rats did not restore the physiological conditions required for testosterone's stimulation of tear IgA and SC. (4) Selective ablation of the anterior pituitary gland also interfered with the testosterone-induced elevation of tear IgA and SC content. (5) Treatment of orchiectomized and/or hypophysectomized rats with rat prolactin, growth hormone, alpha-melanocyte-stimulating hormone or vehicle for 4 days had no effect on tear SC and/or IgA levels. Overall, these findings demonstrate that an intact hypothalamic-pituitary axis either supports or mediates the androgen control of the secretory immune system in the eye.  相似文献   

13.
In most mammals, pituitary-testicular hormone secretion is very active during the perinatal period, but the physiological significance of this function for later pituitary-gonadal interactions and sexual maturation is largely unknown. Short-term neonatal treatment with gonadotropin-releasing hormone (GnRH) antagonist results in delayed sexual maturation and infertility in male rats. We have now extended our earlier findings and studied in more detail the pituitary-gonadal function in adult rats after such neonatal treatment. In this study, the pituitary-testicular activity of newborn male rats was temporarily blocked by treatment with a GnRH antagonist analogue (N-Ac-4-Cl-D-Phe1, 4-Cl-D-Phe2, D-Trp3, D-Phe6, des-Gly10-GnRH-D-alanylamide; Organon 30039; 2 mg/kg s.c. twice daily) on Days 1-5 of life. Timing of puberty was slightly delayed in the treated rats (average: 2 days, p less than 0.05), as determined by the age of the balano-preputial separation. In adult rats (90-110 days), only 3 of the 17 rats treated neonatally with GnRH antagonist were fertile (14 of 17 controls, p less than 0.01), despite normal circulating androgen levels. Pituitary and serum follicle-stimulating hormone (FSH) levels were slightly but consistently elevated (20-30%; p less than 0.05) in antagonist-treated animals, whereas luteinizing hormone (LH) levels (both immunoreactive and bioactive) were unaffected. The pituitary contents of GnRH receptors were increased in antagonist-treated animals 85 +/- 6.6 (mean +/- SEM, n = 19) vs. 58 +/- 4.1 fmol/gland in controls (n = 20; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Experiments were designed to determine if the responsiveness of the anterior pituitary to the prolactin (Prl) inhibiting effects of dopamine were altered during the sexual maturation of the male rat. Initial experiments established that bolus injection of dopamine HCl into cannulated (left carotid) rats pretreated with alpha-methyl-p -tyrosine (MPT) resulted in an appropriate reduction of serum Prl and that the MPT treatment did not significantly alter testosterone or luteinizing hormone (LH). Immature (25-30 days), pubertal (50-55 days), and young adult (75-80 days) rats were studied. One hour after MPT administration a blood sample was collected, followed by administration via the cannula of 2.5, 10, 40 or 160 micrograms dopamine/100 g BW or the 5% glucose vehicle. Additional blood samples were collected 15, 30, 45 and 60 min after dopamine. MPT administration resulted in a significant increase in serum Prl compared to saline-treated controls at all ages; however, the absolute value of these increases varied significantly with age. Subsequent data were calculated in terms of the decrement in serum Prl versus Time O. In immature rats the 160-micrograms dose of dopamine resulted in a significant inhibition of Prl at 15 and 30 min when compared to glucose-treated controls. In pubertal animals, 40 micrograms dopamine was effective in inhibiting Prl at both 15 and 30 min. In young adult rats, 10 micrograms dopamine was effective at 15 and 30 min; 160 micrograms lowered Prl through 45 min. These data suggest that the responsiveness of the pituitary to the Prl inhibiting effects of dopamine increases during the sexual maturation of the male rat.  相似文献   

15.
The objective of this study was to perform a comprehensive morphologic analysis of developing mouse external genitalia (ExG) and to determine specific sexual differentiation features that are responsive to androgens or estrogens. To eliminate sex steroid signaling postnatally, male and female mice were gonadectomized on the day of birth, and then injected intraperitoneally every other day with DES (200ng/g), DHT (1μg/g), or oil. On day-10 postnatal male and female ExG were dissected, fixed, embedded, serially sectioned and analyzed. We identified 10 sexually dimorphic anatomical features indicative of normal penile and clitoral differentiation in intact mice. Several (but not all) penile features were impaired or abolished as a result of neonatal castration. Those penile features remaining after neonatal castration were completely abolished with attendant clitoral development in androgen receptor (AR) mutant male mice (X(Tfm)/Y and X/Y AR-null) in which AR signaling is absent both pre- and postnatally. Administration of DHT to neonatally castrated males restored development of all 10 masculine features to almost normal levels. Neonatal ovariectomy of female mice had little effect on clitoral development, whereas treatment of ovariectomized female mice with DHT induced partial masculinization of the clitoris. Administration of DES to neonatally gonadectomized male and female mice elicited a spectrum of development abnormalities. These studies demonstrate that the presence or absence of androgen prenatally specifies penile versus clitoral identity. Differentiated penile features emerge postnatally and are sensitive to and dependent upon prenatal or pre- and postnatal androgen. Emergence of differentiated clitoral features occurs postnatally in either intact or ovariectomized females. It is likely that each penile and clitoral feature has a unique time-course of hormonal dependency/sensitivity.  相似文献   

16.
There is a monotypic change in basal serum gonadotropin levels following retinol treatment of chronically vitamin A-deficient (VAD) male rats. The present study was undertaken to investigate the hypothesis that the specific increase in serum follicle-stimulating hormone (FSH) represents a change in gonadotrope responsiveness to gonadotropin-releasing hormone (GnRH). To this end, a test dose of GnRH was given to VAD rats pre-, 5 days post-, and 10 days postreplacement of vitamin A (PVA). In VAD rats, basal serum FSH and luteinizing hormone (LH) levels were higher than those of controls. Increased LH/testosterone ratios, both in basal levels and in the secretory response to GnRH, suggested Leydig cell hyporesponsiveness in VAD animals. Both the FSH and LH responses to GnRH were maximal at 1 h, declining thereafter. Although the absolute increments in FSH and LH 1 h after GnRH in VAD rats were greater than in controls, the percent increase in FSH tended to be lower in VAD rats and to increase after vitamin A replacement. The specific enhancement of FSH release PVA became evident only when assessing total secretion of FSH and LH after GnRH. Luteinizing hormone response to GnRH increased PVA, but not significantly, while FSH secretion after GnRH increased both 5 and 10 days PVA, times during which basal FSH levels were also increasing. These changes in FSH secretion could not be attributed either to increases in endogenous GnRH or to changes in testosterone or estradiol levels. Basal serum androgen binding protein levels, elevated in VAD animals, did not respond to the acute increases in FSH after GnRH and remained high PVA, suggesting no acute change in Sertoli cell function. Thus, the PVA increase in FSH secretion unmasks a partial inhibition of the gonadotrope present in the retinol-deficient, retinoic acid-fed male rat.  相似文献   

17.
Sex differences were investigated in cholinergic neurons of the septal-diagonal band region of adult rats subjected to neonatal treatment with 3,3',5-triiodo-L-thyronine (T3). Neonatal hyperthyroidism resulted in a 44% increase in specific activity of choline acetyltransferase (ChAT; EC 2.3.1.6) in adult male rat septal-diagonal band region, whereas no change in ChAT activity could be detected in either dorsal or ventral hippocampus. An increase in muscarinic cholinergic receptors, as measured by [3H]quinuclidinyl benzilate [( 3H]QNB) binding, was discovered in both septum-diagonal band and dorsal hippocampus of the T3-treated male rats. Immunohistochemistry in the septal-diagonal band region indicated a more intense staining in the neonatally T3-treated adult male rats than in controls, with larger and more abundant ChAT-positive and nerve growth factor receptor (NGF-R)-positive varicosities. ChAT immunocytochemistry showed a substantial decrease in cell body area in the medial septum and in the vertical limb of the diagonal band of T3-treated male rats, while cell density increased twofold. Female littermates subjected to the same treatment showed no changes in any of the biochemical or immunohistochemical cholinergic markers. Only in the medial septum was morphology significantly altered in the female T3-treated rats in that ChAT-positive cell body area increased. These results indicate a marked sexual variation in the septal-diagonal band region with respect to the sensitivity of postnatally developing cholinergic neurons to the actions of excess thyroid hormone.  相似文献   

18.
The perinatal critical period when androgen suppresses the capacity of virgin female rats to display maternal behavior in response to pups in adulthood was studied. A single direct injection of a large dose of testosterone propionate (TP) to the fetuses on Days 19 or 21 of pregnancy, but not during the neonatal period, significantly suppressed maternal responses in females. Percentages of females with anovulatory ovaries were largest in groups treated with TP within 2 days after birth. It is suggested that the androgen-sensitive period of the maternal mediating systems in the female rat exists prenatally, whereas the critical period of the systems regulating the cyclic release of ovulatory hormone is in the neonatal period.  相似文献   

19.
To date, the phenomenon of maternal transfer of hormones to the young is an enigma. The present study explains for the first time the maternal transfer of melatonin (MEL) to the young, affecting neonatal growth and sexual maturation. The suckling pups of MEL-treated mothers exhibited significant decreases in body, testicular, vas deferens (male pups), ovarian and uterine (female pups) weights and increases in pineal gland activity along with high plasma MEL levels. The plasma level of testosterone decreased significantly in male pups, while estradiol increased and progesterone decreased in female pups of MEL-treated mothers. These results clearly suggest that MEL could be transported from the mothers to their young postnatally via the milk in order to influence neonatal growth and sexual maturation. Our results support the earlier concept and show for the first time that MEL can be transported from the mother to the young either prenatally through the placenta or postnatally via the milk. Therefore, maternal MEL can act as a biological signal for neonatal growth and sexual maturation.  相似文献   

20.
K W Chung 《Life sciences》1989,44(4):273-280
The purpose of this study was to investigate ethanol-induced changes in androgen receptor sites in the anterior pituitary, hypothalamus, and brain cortex. Young adult male King-Holtzman rats were fed for 5 months a nutritionally complete liquid diet, with ethanol or isocaloric sucrose constituting 36% of the total calories. Androgen receptor sites were measured by sucrose density gradient and charcoal assay using tritiated dihydrotestosterone (DHT). Scatchard plot analysis of the data revealed that apparent dissociation constants of DHT-receptor complex for the anterior pituitary, hypothalamus, and brain cortex from alcohol-fed animals were estimated to be 0.7 +/- 0.13, 0.6 +/- 0.16 and 0.9 +/- 0.15 nM, respectively. These values are identical to those of their isocaloric controls. The concentrations of cytosol androgen receptors of the pituitary, hypothalamus, and brain cortex from alcohol-fed rats were 8.0 +/- 1.2, 6.2 +/- 1.0 and 4.9 +/- 0.7 fmol/mg protein, respectively. This represents about a 34, 24, and 22% reduction when compared to the values of the isocaloric control animals. In contrast to control rats, neither castration nor androgen or LHRH replacement to castrated alcohol-fed rats altered an alcohol-induced reduction of androgen receptor contents. Serum LH and testosterone levels were significantly decreased in alcohol-fed rats but these hormone levels were increased by administration of LHRH or norepinephrine. Such reduction of androgen receptors, serum LH and testosterone, but enhancement of these hormone levels by treatment with neurohormone and neurotransmitter in these animals suggests that ethanol exerts an adverse effect on the hypothalamic-pituitary unit and the neurotransmitter-hypothalamic hormone relationship, resulting in impairment of the androgen-induced sexual events and a suppression of the pituitary gonadotropin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号