首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian receptors for gonadotropin-releasing hormone (GnRH) have over 85% sequence homology and similar ligand selectivity. Biological studies indicated that the chicken GnRH receptor has a distinct pharmacology, and certain antagonists of mammalian GnRH receptors function as agonists. To explore the structural determinants of this, we have cloned a chicken pituitary GnRH receptor and demonstrated that it has marked differences in primary amino acid sequence (59% homology) and in its interactions with GnRH analogs. The chicken GnRH receptor had high affinity for mammalian GnRH (K(i) 4.1 +/- 1.2 nM), similar to the human receptor (K(i) 4.8 +/- 1.2 nM). But, in contrast to the human receptor, it also had high affinity for chicken GnRH ([Gln(8)]GnRH) and GnRH II ([His(5),Trp(7),Tyr(8)]GnRH) (K(i) 5.3 +/- 0.5 and 0.6 +/- 0.01 nM). Three mammalian receptor antagonists were also pure antagonists in the chicken GnRH receptor. Another three, characterized by D-Lys(6) or D-isopropyl-Lys(6) moieties, functioned as pure antagonists in the human receptor but were full or partial agonists in the chicken receptor. This suggests that the Lys side chain interacts with functional groups of the chicken GnRH receptor to stabilize it in the active conformation and that these groups are not available in the activated human GnRH receptor. Substitution of the human receptor extracellular loop two with the chicken extracellular loop two identified this domain as capable of conferring agonist activity to mammalian antagonists. Although functioning of antagonists as agonists has been shown to be species-dependent for several GPCRs, the dependence of this on an extracellular domain has not been described.  相似文献   

2.
In order to elucidate the role of 5 alpha-reductase in the ovarian pubertal transition from 5 alpha-reduced to non-5 alpha-reduced steroids, we examined the characteristics and regulation of granulosa cell (GC) 5 alpha-reductase activity. Maximum activity was observed at 37 degrees C and at a pH of 6.5-8.0. Synthetic 4-aza-3-oxosteroids proved to be potent inhibitors (76% inhibition at 0.1 microM) of ovarian 5 alpha-reductase activity, and 20 alpha-DHP was a better substrate than either progesterone or testosterone (4- or 7-fold higher affinity constants, respectively). The Km (20 alpha-DHP) of the enzyme was 0.50 +/- 0.03 microM and 0.75 +/- 0.20 microM in homogenates of whole ovaries and GC, respectively. 17 beta-Estradiol was a non-competitive inhibitor (KI = 6.97 microM). 5 alpha-Reductase activity was 22-fold (immature) to 68-fold (mature) higher in liver than ovary and 4-fold higher in theca-interstitial shells than in isolated GC. Ovarian 5 alpha-reductase activity decreased markedly with age (greater than 60% inhibition in mature, randomly cycling rats as compared to immature rats). In vivo administration of follicle-stimulating hormone (FSH) to immature rats produced a dose-dependent decrease in GC 5 alpha-reductase activity (36 +/- 1.1% and 46 +/- 5.9% inhibition following 12 micrograms and 24 micrograms FSH, respectively). Similarly, the in vitro provision of FSH (100 ng/ml) to cultured GC from immature rats resulted in (36-59%) inhibition in 5 alpha-reduced steroids. Inasmuch as FSH promotes GC development and the advancement of puberty, its ability to "switch-off" ovarian 5 alpha-reductase activity may enhance the formation of biologically potent (i.e. non-5 alpha-reduced) progestins as well as the availability of aromatizable androgens, in the best interests of pubertal steroidogenesis.  相似文献   

3.
P B Jones  P M Conn  J Marian  A J Hsueh 《Life sciences》1980,27(22):2125-2132
We have previously shown that gonadotropin releasing hormone (GnRH) and its agonists inhibit ovarian functions by a direct action on ovarian granulosa cells in vitro. A labeled GnRH agonist, [des-Gly10, D-Ser (TBu)6, Pro9-NHEt]GnRH, was used here to examine the possibility that these inhibitory actions of GnRH were mediated through specific receptors which recognize GnRH. Ovarian membrane fractions obtained from immature, hypophysectomized diethylstilbesterol-treated rats were incubated with the 125I-GnRH agonist and specific binding was determined by a filtration assay. Stereospecific, high affinity binding was detected in the ovarian membranes; the dissociation constant for the labeled GnRH agonist was determined to be 0.84 ± 0.33 × 10?10 M and the binding capacity was calculated to be 12.9 fmol/mg protein, or 0.142 fmol/μg DNA. The binding affinity for the GnRH decapeptide was 3.3 times lower than that of the GnRH agonist whereas two GnRH partial peptides did not compete for the 125I-agonist binding. After sequential treatment with FSH, LH and prolactin to the hypophysectomized female rats, the ovarian GnRH binding capacity increased per ovary, but decreased per mg ovarian protein.Furthermore, ovarian granulosa cells were isolated and their binding capacity was determined to be 25.2 fmol/mg protein, or 0.133 fmol/μg DNA, suggesting that the granulosa cells contain GnRH binding sites. Thus, this report demonstrates the presence of stereospecific, high affinity GnRH binding sites in the rat ovarian granulosa cells.  相似文献   

4.
Gonadotropin-stimulated steroidogenesis in the differentiating ovarian granulosa cell is mediated through the activation of cAMP-dependent protein kinase, and is also modulated by calcium-dependent mechanisms. Granulosa cells contain calcium-activated, phospholipid-dependent protein kinase (C kinase), and show an increase in phosphatidylinositol turnover in response to GnRH agonist analogs. To evaluate the role of C kinase in ovarian steroidogenesis, the potent phorbol ester, TPA, and the permeant diacylglycerol, OAG, were used to activate C kinase in granulosa cells from PMSG-treated immature rats. Both TPA and OAG caused dose-dependent stimulation of progesterone production without affecting intra- or extracellular cAMP levels. However, the maximum steroid responses to these compounds were less than those stimulated by cAMP. The ED50 for TPA-stimulated progesterone production was 3 nM, which is close to the known Km for activation of C kinase. Stimulation of steroidogenesis was only observed with biologically-active phorbol esters and permeant diacylglycerols such as OAG and DOG. Exposure of granulosa cells to phospholipase C also increased progesterone production in a dose-dependent manner without changing the cAMP content. Although TPA and OAG did not increase basal cAMP production, both agents enhanced the cAMP responses stimulated by hCG and forskolin; likewise, phospholipase C alone did not change cAMP production but caused a dose-dependent increase in the cAMP responses to hCG and forskolin. These results demonstrate that activation of C kinase promotes steroidogenesis in ovarian granulosa cells, and potentiates the activation of adenylate cyclase by hCG and forskolin. Such findings support the possibility that the calcium, phospholipid-dependent enzyme could be involved in the regulation of progesterone production by hormonal ligands such as gonadotropins and GnRH.  相似文献   

5.
Recent reports of the presence of components of the renin-angiotensin system (RAS) in the mammalian ovary suggest that angiotensin II (Ang II) may be elaborated by this structure. In this study, angiotensin-converting enzyme (ACE), a key enzyme in the synthesis of Ang II, was identified enzymatically and localized to the germinal epithelium surrounding corpora lutea, granulosa cells of some--but not all--follicles, and blood vessels of the rat ovary using a potent and specific radiolabeled ACE inhibitor, 125I-351A. Follicles that bound 125I-351A also contained Ang II-receptor binding sites. Co-localization of RAS components to the follicular granulosa cells and the ability of Ang II to promote estrogen formation suggest that the ovarian RAS may promote follicular development and assertion of dominance.  相似文献   

6.
We have investigated the stimulation of phospholipase D activity by the gonadotropin-releasing hormone receptor agonist [D-Ala6, des-Gly10]GnRH N-ethylamide (GnRH-A) in preovulatory, cultured granulosa cells. GnRH-A stimulated up to 10-fold accumulation of phosphatidylethanol, produced by phospholipase D phosphatidyl transferase activity when ethanol acts as the phosphatidyl group acceptor. The effect of GnRH-A was concentration dependent (EC50 = 1 nM) and was inhibited by a specific GnRH receptor antagonist. Low GnRH-A concentrations (less than 10 nM) stimulated also accumulation of phosphatidic acid, but at higher concentrations this response was attenuated. Propranolol, which inhibits phosphatidic acid phosphohydrolase, increased both basal and GnRH-A-stimulated production of phosphatidic acid. A protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA, 100 nM), increased up to 30-fold phosphatidylethanol levels. The effects of supramaximal concentrations of GnRH-A (50 nM) and TPA (1 microM) on the accumulation of phosphatidylethanol were additive, suggesting that the two agents may not act via the same mechanism. This is supported by the fact that 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, a protein kinase C inhibitor, inhibited the effect of TPA 50%, but not that of GnRH-A. However, 24 h pretreatment with TPA abolished cellular response to subsequent treatment with either TPA or GnRH-A. The stimulatory action of GnRH on steroidogenesis could be mimicked by elevating endogenous phosphatidic acid levels in granulosa cells. Exogenous phospholipase D (from Streptomyces chromofuscus, 10 IU/ml) significantly increased (2.7-fold) progesterone production by the cells; under the same conditions, GnRH-A and FSH stimulated progesterone production 3- and 2.6-fold, respectively. Similarly, propranolol stimulated progesterone production 2.2-fold. These results suggest that, in granulosa cells, GnRH receptors are coupled to a phospholipase D whose activation may participate in transducing the GnRH signal for accelerated steroidogenesis. Phospholipase D activity can be independently regulated also by protein kinase C. The possible interrelationships between phospholipase D and other phospholipases which may be activated by GnRH in these ovarian cells are discussed.  相似文献   

7.
Studies in both mammalian and nonmammalian ovarian model systems have demonstrated that activation of the mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways modulates steroid biosynthesis during follicle development, yet the collective evidence for facilitory versus inhibitory roles of these pathways is inconsistent. The present studies in the hen ovary describe the changing role of MAPK and PKC signaling in the regulation of steroidogenic acute regulatory protein (STAR) expression and progesterone production in undifferentiated granulosa cells collected from prehierarchal follicles prior to follicle selection versus differentiated granulosa from preovulatory follicles subsequent to selection. Treatment of undifferentiated granulosa cells with a selective epidermal growth factor receptor (EGFR) and ERBB4 receptor tyrosine kinase inhibitor (AG1478) both augments FSH receptor (Fshr) mRNA expression and initiates progesterone production. Conversely, selective inhibitors of both EGFR/ERBB4 and MAPK activity attenuate steroidogenesis in differentiated granulosa cells subsequent to follicle selection. In addition, inhibition of PKC signaling with GF109203X augments FSH-induced Fshr mRNA plus STAR protein expression and initiates progesterone synthesis in undifferentiated granulosa cells, but inhibits both gonadotropin-induced STAR expression and progesterone production in differentiated granulosa. Granulosa cells from the most recently selected (9- to 12-mm) follicle represent a stage of transition as inhibition of MAPK signaling promotes, while inhibition of PKC signaling blocks gonadotropin-induced progesterone production. Collectively, these data describe stage-of-development-related changes in cell signaling whereby the differentiation-inhibiting actions of MAPK and PKC signaling in prehierarchal follicle granulosa cells undergo a transition at the time of follicle selection to become obligatory for gonadotropin-stimulated progesterone production in differentiated granulosa from preovulatory follicles.  相似文献   

8.
Rat ovarian tissue has been shown to contain high-affinity gonadotropin-releasing hormone (GnRH) receptors, and synthetic GnRH analogues have been shown to inhibit steroid production by rat corpora lutea in vivo and in vitro. These results raise the possibility that an ovarian GnRH-like peptide may be involved in normal luteal regression. We have examined binding of D-Ala6-des-Gly10-GnRH ethylamide (D-Ala) to rabbit corpora lutea, and have investigated the luteolytic activity of this analogue in hypophysectomized, pseudopregnant rabbits. Three hypophysectomized estrogen-treated rabbits were injected with 0.25 mg D-Ala s.c. every 6 h for 48 h during mid-pseudopregnancy, and three were injected with vehicle only. Treatment with D-Ala produced no acute changes in serum progesterone, nor was the time of luteal regression altered. Rabbit anterior pituitary tissue was found to contain high-affinity GnRH receptors (Ka = 7.0 X 10(9) M-1; 188.2 +/- 35.6 fmol/mg protein). However, no similar high-affinity GnRH receptors were detected in rabbit luteal tissue from any stage of pseudopregnancy. Some apparent low-affinity binding was observed, but this displaceable binding was subsequently observed in all control tissues tested. Thus, a potent GnRH analogue does not have any detectable direct effect on steroidogenesis in the rabbit corpus luteum, nor are high-affinity GnRH binding sites present in rabbit luteal tissue.  相似文献   

9.
The ability of the 5 alpha-dihydroprogesterone analog, 4-aza-4-methyl-5 alpha-pregnane-3,20-dione (AMPD), to inhibit the progesterone 5 alpha-reductase and the two 5 alpha-dihydroprogesterone 3 alpha-hydroxysteroid oxidoreductase activities (NADH- and NADPH-linked) from female rat hypothalamus has been studied. Dose response experiments indicate that AMPD is a potent antagonist of hypothalamic progesterone 5 alpha-reduction but is an ineffective inhibitor of the NADPH- and NADH-linked 3 alpha-hydroxysteroid oxidoreductase activities, even at concentrations up to 10 microM. Kinetic analyses of the interaction of AMPD with the progesterone 5 alpha-reductase show that it is a competitive inhibitor versus progesterone (Ki(slope) = 6.2 +/- 0.5 nM; apparent Km (progesterone) = 130 +/- 12 nM) and an uncompetitive inhibitor versus NADPH (Ki(intercept) = 11.8 +/- 0.8 nM). These inhibition patterns are consistent with the concept that NADPH binding precedes that of either AMPD or progesterone. The inhibition of the progesterone 5 alpha-reductase by AMPD does not appear irreversible since preincubation of the enzymatic activity (at 37 degrees C) with inhibitor and NADPH, for periods of time up to 60 min, does not lead to a time-dependent loss of activity. Furthermore, this inhibition can be easily removed via dilution, even following a 60-min preincubation with AMPD and NADPH. It is postulated that the specific and powerful inhibition of the progesterone 5 alpha-reductase by AMPD may be due to this compound functioning as a transition state analog. This inhibitor should prove valuable in studying the characteristics of the progesterone 5 alpha-reductase and the function of hypothalamic progestin metabolism.  相似文献   

10.
The present study examined the effects of bursal anti-steroidogenic peptide (BASP) on mitogen-induced DNA synthesis in bursa-derived B-lymphocytes in short-term culture. Partially purified extracts of chicken bursa of Fabricius tissue, containing BASP, significantly (P < 0.05) reduced DNA synthesis in bursal-lymphocytes exposed to increasing concentrations of phorbol 12,13-dibutyrate (PDB). Following these initial observations, BASP, further purified from bursal extracts using sequential rpHPLC fractionation, was observed to reduce (P < 0.05) both B-lymphocyte PDB-stimulated DNA synthesis and ovarian granulosa cell progesterone biosynthesis with bioactivity observed at similar retention times in each assay, suggesting that each bioactivity may be due to the same or similar molecules. A similar BASP-enriched fraction was not effective in altering basal levels of DNA synthesis in chick embryonic kidney cells. Subsequently, BASP was further purified by several sequential chromatographic methods including: C-18 rpHPLC (preparative rpHPLC followed by a semi-preparative rpHPLC column), cation exchange chromatography, molecular sieve HPLC chromatography, and SDS-PAGE. Biologically active material was observed at approximately 29 or 34 kDa. Protein concentration was determined and bioactivity was evaluated. Anti-proliferative effects of this partially purified BASP on bursal-lymphocytes was observed at concentrations as low as 1.6 micrograms ml-1, with complete suppression of mitogen-stimulated DNA synthesis observed at approximately 25 micrograms ml-1. This partially purified BASP was also efficacious for attenuation of ovarian granulosa cell progesterone biosynthesis at concentrations as low as 0.4 microgram ml-1, with complete suppression of gonadotrophin-stimulated progesterone biosynthesis observed at approximately 0.8 microgram ml-1. While BASP is efficacious for attenuation of both granulosa cell steroidogenesis and bursal-lymphocyte proliferation, these data suggest that BASP is much more potent with regard to anti-steroidogenic activity.  相似文献   

11.
The hormonal regulation of cAMP-dependent protein kinase was examined in granulosa cells from diethylstilbestrol-implanted immature rats. Follicle-stimulating hormone (FSH) increased the number of available cAMP-binding sites in a dose- and time-dependent manner, with a maximum 4-6-fold increase at 50-100 ng/ml between 6 and 48 h of culture after a transient decrease in available sites during the first 6 h. The potent gonadotropin-releasing hormone (GnRH) agonist [D - Ala6]des - Gly10 - GnRH - N - ethylamide (GnRHa) reduced the FSH-induced increase in cAMP-binding sites by approximately 50% at 24 and 48 h of culture. Photoaffinity labeling with 8-azido-[32P] cAMP revealed the existence of one major cAMP-binding protein (Mr = 55,000 +/- 400) which appeared to be the regulatory (R) subunit of type II cAMP-dependent protein kinase. While FSH induced a 5-10-fold increase in the labeling of R II both in vivo and in vitro, GnRHa reduced the amount of R II induced by FSH in granulosa cells cultured for 48 h. The large increase in R II subunit was not accompanied by a corresponding increase in protein kinase activity, which was only enhanced by 50% after 48 h of culture with FSH. Fractionation of granulosa cell cytosol from FSH-treated ovaries on DEAE-cellulose showed a single peak of cAMP-dependent phosphokinase activity with the elution properties of a type II protein kinase. However, the peak of cAMP binding activity (eluted at 0.20 M KCl) was not coincident with the protein kinase activity. FSH transiently stimulated cAMP-dependent protein kinase activity during the first 10-30 min of culture. GnRHa impaired the FSH-induced early increase in protein kinase activity, causing a delay in activation until 60 min. These findings suggest that a large dose- and time-dependent increase in the content of cAMP-binding sites may be a major factor in cAMP-mediated differentiation of granulosa cells. The inhibitory effect of GnRHa on both FSH-induced protein kinase activation during the first minutes of culture and on FSH-induced R II synthesis during the subsequent 48 h of culture could be crucial events in the prevention of granulosa cell maturation by GnRH agonists.  相似文献   

12.
2 alpha-Cyanoprogesterone potently inhibits the conversion of [3H]pregnenolone into progesterone catalysed by bovine corpora lutea, bovine adrenal cortex and human term placenta microsomes (microsomal fractions), yielding IC50 (concentration causing 50% inhibition) values of 66 nM, 120 nM and 700 nM respectively. By contrast, it is an exceedingly poor inhibitor of the isomerization of pregn-5-ene-3,20-dione, yielding IC50 values between 50 and 70 microM. On this basis, 2 alpha-cyanoprogesterone would appear to be an extraordinarily selective inhibitor of the 3 beta-hydroxysteroid dehydrogenase. Dixon plots indicate that it is a very-tight-binding competitive inhibitor of the corpus-luteum enzyme, yielding a Ki of 15 nM. In the bovine adrenal cortex and human placenta the steroid is less potent and inhibits the dehydrogenase non-competitively with Ki values of 150 nM and 1.0 microM respectively. Thus 2 alpha-cyanoprogesterone inhibits the corpus-luteum dehydrogenase with substantial selectivity. Because of its high affinity for the ovarian enzyme, the presence of low-micromolar concentrations of 2 alpha-cyanoprogesterone can promote a complete cessation of progesterone synthesis in corpora-lutea microsomes for several hours. Since this effect is observed in the presence of saturating concentrations of pregnenolone (50 microM), it is predicted that this inhibitor may be even more potent in vivo. 2 alpha-Cyanoprogesterone displays very low affinity for the human progesterone receptor, yielding a Kd of 600 nM as against a Kd of 1.6 nM for progesterone. It is suggested that 2 alpha-cyanoprogesterone may be a selective inhibitor of ovarian progesterone synthesis and may act as an effective anti-gestational agent in vivo.  相似文献   

13.
14.
The mammalian ovary is composed of ovarian follicles, each follicle consisting of a single oocyte surrounded by somatic granulosa cells, enclosed together within a basement membrane. A finite pool of follicles is laid down during embryonic development, when oocytes in meiotic arrest form a close association with flattened granulosa cells, forming primordial follicles. By or shortly after birth, mammalian ovaries contain their lifetime’s supply of primordial follicles, from which point onwards there is a steady release of follicles into the growing follicular pool.The ovary is particularly amenable to development in vitro, with follicles growing in a highly physiological manner in culture. This work describes the culture of whole neonatal ovaries containing primordial follicles, and the culture of individual ovarian follicles, a method which can support the development of follicles from an immature through to the preovulatory stage, after which their oocytes are able to undergo fertilization in vitro. The work outlined here uses culture systems to determine how the ovary is affected by exposure to external compounds. We also describe a co-culture system, which allows investigation of the interactions that occur between growing follicles and the non-growing pool of primordial follicles.  相似文献   

15.
Medroxyprogesterone acetate (MPA), a widely used synthetic steroid, was studied to determine both its effects on steroid receptors and steroidogenesis in the well-characterized rat ovarian granulosa cell model. Initial receptor binding studies showed MPA was as potent as progesterone and 10-fold less potent than R-5020 (an active synthetic progestin) in binding to progesterone cytosolic receptors in rat ovarian granulosa cells. MPA was 20-fold less potent than testosterone, and 10-fold less potent than dexamethasone in binding to the androgen and glucocorticoid cytosolic receptors, respectively. The binding of MPA to progestrone, androgen and glucocorticoid receptors predicted direct effects of MPA on FSH-stimulated estrogen (E), progesterone (P), and 20 alpha-dihydroprogesterone (DHP) production by cultured rat ovarian granulosa cells. MPA at 10(-7) to 10(-6) M significantly augmented FSH-stimulated P and DHP production (a previously documented progestin, androgen and glucocorticoid effect). This augmentation was blocked by the concurrent addition to cell culture of 10-fold excess RU-486 (a potent anti-progestin and anti-glucocorticoid). At concentrations greater than 10(-6) M, MPA inhibited the production of P and DHP (a progestin effect), and the production of E (a progestin and glucocorticoid effect). MPA, structurally a progestin, has complex steroid hormone effects predicted by its interaction with progesterone, androgen and glucocorticoid receptors.  相似文献   

16.
Both gonadotropin-releasing hormone (GnRH) and prostaglandin F2 alpha (PGF2 alpha) can inhibit cAMP and progesterone production in the corpus luteum; however, their mechanism of action is not known. GnRH or PGF2 alpha causes a rapid and marked increase of labelling of phosphatidylinositol (PI) and phosphatidic acid (PA) in rat luteal cells in culture. The incorporation of radioactivity is increased as early as 2 and 5 min into PA and PI, respectively. The labelling of the other phospholipids is not affected. GnRH and PGF2 alpha exert their stimulatory effects on PA-PI turnover at a mean effective dose value of ca. 15 and 100 nM, respectively. Their effects appeared to be additive when both agents were present in the same incubations. Interestingly, addition of the calcium ionophore A23187 also causes a dramatic increase of PA-PI turnover in luteal cells. By contrast, human chorionic gonadotropin and isoproterenol, agents that stimulate cAMP and progesterone production in luteal cells, as well as PGE2 (1 microM), all fail to alter phospholipid labelling; dibutyryl or 8-bromo-cAMP (2-5 mM) actually attentuates the GnRH or PGF2 alpha effect on PI and PA. A very similar PA-PI response to GnRH and PGF2 alpha has also been observed using rat granulosa cells in culture. It seems that following their binding to membrane receptors, GnRH and PGF2 alpha may share a common mechanism in the ovarian cell, possibly involving the stimulation of PA-PI metabolism.  相似文献   

17.
It would be desirable to expand the existing general knowledge concerning direct action of metals on the ovary. Nevertheless, the results of testing of iron compound on porcine ovarian cells should be interpreted carefully because iron is an essential element which could also induce changes in cellular processes. The aim of this in vitro study was 1) to examine dose-dependent effects of iron on the secretory activity of porcine ovarian granulosa cells, and 2) to outline the potential intracellular mediators mediating these effects. Specifically, we evaluated the effect of iron sulphate on the release of insulin-like growth factor I (IGF-I) and progesterone, as well as the expression of markers of proliferation (cyclin B1) and apoptosis (caspase-3) in porcine ovarian granulosa cells. Concentrations of IGF-I and progesterone were determined by RIA, cyclin B1 and caspase-3 expression by immunocytochemistry (ICC). Our results show a significantly decreased IGF-I secretion by ovarian granulosa cells after iron sulphate addition at the doses 0.5 and 1.0 mg/ml. The iron sulphate additions at doses 0.17 and 1.0 mg/ml had no effect on progesterone secretion. In contrast, iron sulphate addition at doses 0.17-1.0 mg/ml resulted in stimulation of cyclin B1 and caspase-3 expression. In conclusion, the present results indicate a direct effect of iron on 1) secretion of growth factor IGF-I but not steroid hormone progesterone, 2) expression of markers of proliferation (cyclin B1), or 3) apoptosis (caspase-3) of porcine ovarian granulosa cells. These results support an idea that iron could play a regulatory role in porcine ovarian function: hormone release, proliferation and apoptosis.  相似文献   

18.
19.
哺乳动物卵巢排卵是一个复杂的调控过程。卵泡成熟破裂后,卵母细胞从卵巢中排出。卵泡细胞感受排卵刺激,并诱导卵母细胞减数分裂的恢复及其随后的释放。卵母细胞及其周围颗粒细胞的旁分泌在对此起关键性作用,其中卵母细胞对其释放具有决定性作用。作者先前已经阐述过颗粒细胞在哺乳动物卵巢排卵过程中的调控作用,该文将从卵母细胞的发育及其调控角度重点阐明其在排卵过程中的决定作用,旨在进一步理解哺乳动物卵巢的排卵过程,同时为不孕不育等卵巢疾病的治疗提供重要的研究方向和理论基础。  相似文献   

20.
A J Hsueh  N C Ling 《Life sciences》1979,25(14):1223-1229
We have recently demonstrated that gonadotropin releasing hormone (GnRH) acts directly on ovarian granulosa cells to inhibit the follicle stimulating hormone (FSH)-induced increase in granulosa cell steroidogenesis invitro. A GnRH antagonist, [D-pGlu1, D-Phe2, D-Trp3,6] GnRH (A), which is known to antagonize GnRH-stimulated gonadotropin release by cultured pituitary cells, was tested in the granulosa cell system. GnRH (10?8M) inhibited estrogen and progesterone production by FSH-treated granulosa cells invitro, whereas the antagonist A (10?6M) did not affect FSH stimulation of steroidogenesis. Antagonist A, when added together with GnRH and FSH, blocked the GnRH inhibition of FSH-induced steroidogenesis. Estrogen and progesterone production by granulosa cells was increased by 50% at a molar ratio (IDR50) of 201and121 ([antagonist]/[GnRH]), respectively. At 10?6M, antagonist A completely prevented the GnRH (10?8M) inhibition. A similar effect of antagonist A was seen in FSH-induced increase of luteinizing hormone (LH) receptor content. FSH treatment for 2 days invitro induced an 8-fold increase in LH receptor content in cultured granulosa cells; concomitant treatment with 10?8M GnRH completely inhibited the FSH effect. Antagonist A (10?6M), by itself, had no effect on the FSH action. However, when added together with FSH and GnRH, antagonist A completely abolished the inhibitory effect of GnRH. These results demonstrate that the direct inhibitory effect of GnRH on granulosa cell function can be prevented by a GnRH antagonist and that the GnRH action at the ovarian level may require stringent stereospecific interactions of these peptides with putative GnRH recognition sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号