首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chalazal area is confirmed as the site of initial water entry into prickly sida (Sida spinosa L.) seeds. Very early during imbibition of water, a kidney-shaped area of the seed coat separates from underlying cells forming a blister. This blister may also be induced in dry seeds (both afterripened and nonafterripened) when pressure is applied to the chalazal area. Blisters form more readily on afterripened seeds than on nonafterripened seeds, however, and the event is correlated with an increase in seed coat permeability to water. Immediately beneath the palisade layer of the blister lies a single layer of subpalisade cells. This layer is observed only in the region of blister formation. As the blister separates, the end walls of the subpalisade cells remain attached to the floor of the palisade layer. The subpalisade cells are thereby broken open, and their contents disgorged into the blister lumen. Evidence indicates that this separation of the palisade and subpalisade layers in the chalazal area initiates imbibition of water by prickly sida seeds.  相似文献   

2.
Newly matured prickly sida (Sida spinosa) seeds were hard, but afterripening, heat or pressure permitted water entry solely via a predefined region of the chalazal area. In this region, the raising of a “blister” formed by separation of the palisade of the seed coat from underlying tissues preceeded measurable water uptake by prickly sida seeds. A single subpalisade layer, unique to the region beneath the blister, was involved in the sequence of events in seed water uptake. The lateral walls of subpalisade cells invariably broke near the palisade border and cell contents were extruded onto the surface. This report describes the cytological development of the subpalisade layer from 1-21 days post anthesis. Cells beneath the potential “blister” near the chalazal slit developed into columnar subpalisades and cells beneath the subpalisades or beyond the margins of the potential blister, developed into oval, thick-walled chalazal cap cells. By 6-10 days, distinct features of the subpalisades included: 1) thin portions in lateral walls due to lack of secondary wall depositions at the palisade border; 2) progressive accumulation of fibrous material in numerous vacuoles; and 3) progressive coalescence of osmiophilic bodies and degeneration of cytoplasmic contents. At 21 days, the seeds were dehydrated, mature and hard, but the thin, lateral subpalisade walls were still intact and had not broken. The thin-walled portions were predetermined weak sites that break, permit palisade separation, expose the area under the blister to available moisture and result in subsequent imbibition of water by the seed. The hydrophilic, fibrous material extruded from the ruptured subpalisade cells may attract water to the newly exposed surface and facilitate penetration of water into the nutritive and embryonic seed tissues.  相似文献   

3.
The seed coat structure and histochemistry of Abelmoschus esculentuswere studied by bright-field, fluorescence and scanning electronmicroscopy. The seed coat was typical of species of the Malvaceae.The endotesta cells had inner tangential walls which were verythick and autofluorescent. The occurrence of phenolic substancesat this level has been related to seed coat imposed dormancy.The palisade cells were composed of three differently shapedparts: an upper ‘prismatic part’, a medium ‘transitionpart’ and a lower ‘twisted part’. The formerwas rich in hydrophilic substances, the latter was lignified.The swelling of the ‘prismatic parts’ was relatedto seed coat cracks. The region controlling onset of water entrywas thought to be the chalazal area. Thanks to the presenceof a large amount of highly acidic polysaccharide, water wasable to penetrate from the permeable maternal tissue, throughthe chalazal cap and plug as far as the boundary between thepalisade and underlying mesophyll. During imbibition of watera kidney-shaped ‘blister’ was seen to rise, formedby separation of the palisade cells from an underlying singlelayer of subpalisade cells. The palisade layer forming the blisterroof showed the same histochemical characteristic of other seedregions. The single layer of the blister floor showed an affinitywith Toluidine Blue O and Alcian blue. Both blister roof andfloor were strongly autofluorescent. Abelmoschus esculentus (L.) Moench, okra, seed coat, chalazal region, water entry, structure, histochemistry  相似文献   

4.
Abstract: The proportion of hard Geraniaceae seeds ranges from 0 to 100%, depending on species. By analysing the characteristics of hardseededness through the pathway of water uptake in soft seeds provided localization of the chalazal area in water uptake. This represents the most important feature of seed coat permeability. The structural difference between hard-and softseededness was clarified by comparing different species with exclusively permeable or impermeable seeds. Soft seeds form a wide opening at the chalazal slit, while hard ones close the slit using adjacent palisade cells so effectively continuing the impermeable barrier.  相似文献   

5.
Winter , Dorothy M. (Iowa State U., Ames.) The development of the seed of Abutilon theophrasti. II. Seat coat. Amer. Jour. Bot. 47(3) : 157—162. Illus. 1960.–The integuments of Abutilon theophrasti Medic. undergo a rapid increase in size, predominantly by anticlinal cell divisions during the first 3 days after fertilization. Within 7 days, the outer epidermis of the inner integument becomes thick walled. At maturity this compact, lignified, and cutinized palisade layer accounts for more than half the thickness of the seed coat. During early growth, the palisade cells form a continuous layer in the micropylar region. In the chalazal region the palisade layer is discontinuous in a slit-shaped region, 60 × 740 microns. The shape of this discontinuity constitutes a major difference between dormant-seeded Abutilon and non-dormant Gossypium seeds. Exterior to the palisade layer is the outer integument which consists of a small-celled layer and a large-celled layer sparsely covered with unicellular, lignified hairs. Interior to the palisade is the thick mesophyll of the inner integument which is largely digested during seed growth and leaves only 2 pigmented cell layers in most regions at maturity. The inner epidermis is small-celled, pigmented and cutinized and adheres tightly to the endosperm. Seed coat impermeability increases with seed maturity. Even immature seeds will germinate, if scarified, indicating a lack of embryo dormancy.  相似文献   

6.
Abstract: In 32 Geraniaceae species, we investigated the so-called light line in the palisade layer of the seed coat. The light line is an incrustation of electron-dense substances in the secondary cell wall. The existence of different gaps in the line and its complete absence near the chalazal area suggest that this cell wall structure is not responsible for hardseededness in the Geraniaceae seed coat. The multiple light line pattern within idioblasts of the palisade layer is characteristic of this cell type, named multiple light line (mll) cells. The palisade cells and their light line in Geraniaceae differ structurally from those in the Fabaceae.  相似文献   

7.
Dormancy of Kosteletzkya virginica (L.) Presl. seeds is primarily due to the impermeability of the seed coat to water. The impermeable structure is assumed to be, in other Malvaceae, the palisade layer of the seed coat. The percentage of seeds capable of imbibition and germination increased with increasing time of storage at low temperatures, but the release from dormancy was not accompanied by decreased seed coat resistance to pressure. Under natural conditions, mechanical damage to the seed coat due to changes in temperature and/or abrasion may render the seeds water permeable. It is not clear what causes water permeability during storage under laboratory conditions. During seed maturation and drying, the inner epidermis of the tegmen partly separates from the rest of the seed coat and an air space, which makes the seed buoyant, is formed around the region of the chalazal cleft. The optimal temperature for germination of K. virginica seeds is between 28 and 30 C in light or darkness.  相似文献   

8.
Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.  相似文献   

9.
姜目芭蕉群植物种子解剖学研究及其系统学意义   总被引:3,自引:0,他引:3  
研究了姜目芭蕉群代表植物象腿蕉属象腿蕉(Ensete glaucum)、旅人蕉属旅人蕉(Ravenala madagascariensis)与蝎尾蕉属Heliconia faranmansis?D6肿咏馄侍卣鳌=峁砻鳎笸冉段藜僦制ぃ制し只霰砥ぁ⒑癖谧橹赴褪赴悖赴瞿谇邢虮谟刖断虮谠龊瘢缓系闱哂泻系闶矣牒系愣眩谥制ち恢榭浊兄榭琢旌涂赘堑姆只榭琢煳涡停赘侵挥赡谥制は赴钩桑褐榭浊制ぱ由煨纬芍制昵唬和馀呷?层细胞:内胚乳细胞径向延长,细胞内充满淀粉粒。旅人蕉具假种皮,种皮分化出外种皮、中种皮和内种皮,外种皮细胞纵向延长,中种皮为7-9层切向延长的薄壁细胞,内种皮为石细胞型:合点区无合点室,内种皮在此出现缺口,缺口为整体轮廓呈喇叭形的近等径薄壁细胞群填充;珠孔区无珠孔领与孔盖的分化:外胚乳缺,内胚乳发达。蝎尾蕉属的Heliconia faranmansis?D6肿游藜僦制ぃ制の薹只墒闾寤闲∏揖断蜓映げ⑴帕形だ缸吹谋”谙赴钩桑褐榭锥酥制は蛲庋由欤纬衫嗨平浦肿拥闹指纷唇峁梗何蘅赘怯胫榭琢斓哂杏晒ば纬傻挠不牵缓系闱肼萌私断嗨疲煌馀呷樵?-4层细胞,细胞壁波浪形弯曲,内胚乳发达。综合作者对兰花蕉(Orchidanha chinensis)和前人对芭蕉群的种子解剖学研究结果,初步总结了芭蕉群种子解剖学特征及其进化式样,讨论了姜目芭蕉群四科种子解剖学特征的系统分类学意义。  相似文献   

10.
Histochemical investigations on the Prosopis juliflora seedcoat indicate the occurrence of a hydrophobic ‘strip’as the primary water barrier. Its position and the structureand histochemistry of the palisade cells of the seed coat differaccording to their location on the seed. These differences maybe responsible for differences in the water permeability ofvarious parts of the seed coat. In particular, parts of theseed coat in which the hydrophobic ‘strip’ is locatedmore superficially tend to be more water impermeable than partslike the chalaza, in which the ‘strip’ is more deeplylocated within the palisade cells. Prosopis juliflora, seed coat impermeability, palisade cells, hydrophobic ‘strip’  相似文献   

11.
九翅豆蔻种子的解剖学和组织化学研究   总被引:11,自引:0,他引:11  
九翅豆蔻种子包括假种皮、种皮、外胚乳、内胚乳和胚.由外珠被发育而来的种皮可划分为外种皮、中种皮和内种皮.外种皮由一层表皮细胞构成,其壁增厚并略木质化.中种皮包括下皮层、油细胞层和含2—5层细胞的色素层;各为一层薄壁细胞的下皮层与油细胞层非常压扁.内种皮由一层石细胞构成,极厚,占种皮厚度的1/3—2/3,是种皮主要的机械层;内种皮整体外观呈波浪形,在珠孔端和合点端的内种皮除外.种子在珠孔端分化出珠孔领和孔盖,在合点端分化出下皮细胞垫、大型薄壁细胞区、维管束和合点端色素细胞区.外胚乳细胞内充满淀粉,内胚乳细胞含有大量蛋白质和多糖,胚细胞含有蛋白质、多糖和脂类物质.脂类物质不存在于油细胞中,而存在于胚细胞、部分假种皮细胞、外种皮细胞和内胚乳最外层细胞中.建议将油细胞(层)改称为半透明细胞(层).  相似文献   

12.
Since the observations of those regularly handling Norway spruce [Picea abies (L.) Karst.] seeds with regard to their imbibition frequently disagree with earlier opinions that this process is markedly inhibited by the seed coat, we decided to examine the morphological factors influencing imbibition in seeds of different colour and different provenances. The seed coat, consisting of the sarcotesta, sclerotesta and endotesta, was found to have little influence on the passage of water, despite the presence of sclereids full of wax lamellae. No differences in seed coat structure were observed between provenances or colours of seeds. The cells of the endotesta were lignified in the area of the micropyle, however, and stood out lip-like on the outer surface of the micropyle after imbibition. An opening in the sclerotesta filled with parenchyma cells was also seen at the chalazal end of the seed. Neither of these openings, which were covered by accumulations of wax, served as the main route for the passage of water, though the micropyle opened up slightly after only 24 h incubation, when the lignified cells bordering it swelled differently from the rest of the endotesta. The progress of water into the seed soon discontinued, however, as the tip of the nucellar cap, covered with wax and crystals, effectively plugged the micropyle. This opening of the micropyle may be the reason why the IDS method does not always succeed in separating viable from non-viable spruce seeds sufficiently well by their density. Imbibition was mostly regulated by the lipophilic layers surrounding the endosperm, which are mainly of nucellar origin, and particularly the megaspore membranes, the outer and inner exine. Imbibition was further hampered by the impermeable nucellar cap, which covered about 3/4 of the length of the endosperm and had merged with the outer exine at its edges. Deposits of wax were observed both between the exines and between the endotesta and the nucellar layers at the edges of the nucellar cap. Waxes may serve as a defence against diseases at the sites of water penetration, while simultaneously increasing the significance of the nucellar endosperm covers as regulators of imbibition.  相似文献   

13.
兰花蕉种子的解剖学和组织化学研究   总被引:3,自引:0,他引:3  
温颖群  廖景平  吴七根   《广西植物》1997,(3):235-241
兰花蕉种子球形或近球形,具表皮毛,种脊不明显。种子包括假种皮、种皮、外胚乳、内胚乳和胚五部分。假种皮具3~4条粗毛状裂片,包围种子或不定向伸展;裂片最外方为1层表皮细胞和1~3层厚壁细胞,内方为薄壁细胞;表皮细胞和厚壁细胞的壁增厚并木质化;成熟时裂片下部1/2段中空。种皮由外珠被发育而来,但内珠被在种子发育后期才萎缩。种皮分化为外种皮,中种皮与内种皮;外种皮由1层表皮细胞构成,其细胞壁增厚并木质化;中种皮外方为2~3层厚壁细胞,内方由12~15层薄壁细胞构成;内种皮由1层径向延长的石细胞构成,其细胞壁网状增厚,胞腔不明显。外胚乳极不显眼,大部分只由1层切向延长的长方形细胞构成,局部为2~17层细胞;外胚乳细胞主要含许多脂类物质及少量蛋白质颗粒,不含淀粉。内胚乳占据种子很大的体积,由通常径向延长的长方形、长条形或方形薄壁细胞构成;细胞内充满淀粉粒和通常一颗亦有2至多颗菱形或方形蛋白质晶体,脂类物质极少。胚圆柱形,胚根和胚芽不明显。种子珠孔区不分化出珠孔领和孔盖,但具柄,柄的远轴端边缘大部分着生假种皮,着生假种皮一侧柄略膨大。合点区内种皮出现极宽的缺口,缺口间为整体呈弧状长条形的合点区厚壁细胞群。较粗的种脊维管?  相似文献   

14.
拟豆寇种子的解剖学和组织化学研究   总被引:1,自引:0,他引:1  
拟豆寇(Paramomum petaloideum)种子包括假种皮,种皮,外胚乳,内胚乳和胚,假种皮膜质,由5-7层薄壁细胞构成,种皮分外种皮,中种皮和内种皮,外种皮由一层细胞构成,其壁增厚并木质化,中种皮包括下皮导,透明细胞层和色素层,下皮由一层细胞构成,细胞近长方形,半透明细胞层由一层细胞组成,细胞近长方形或长条形,形态上与色素层细胞相似,但可通过染色方法把二者区分,色素层由一至二层细胞构成,最内层细胞形态有时难以分辨,内种皮由一层内切几壁非常增厚的石细胞构成,珠孔区分化出珠孔领,孔盖和珠孔区薄壁细胞,珠孔领导形型,孔盖具有石细胞硬具,合点区内种皮内凹陷并出现缺口,缺口位于种子近顶部偏向背侧,缺口间的合点区色素细胞群整体轮廓呈喇形,壁呈波浪形的外胚细胞富含淀粉粒,内胚乳最外一层细胞体积小,富含脂类物质,内胚乳合点端多层细胞,珠孔端为一层细胞,含丰富蛋白质,脂类物质主要存在于胚中,本文还从种子解剖学角度讨论了拟豆寇的系统位置。  相似文献   

15.

Background and Aims

Physical dormancy in seeds of species of Geraniaceae is caused by a water-impermeable palisade layer in the outer integument of the seed coat and a closed chalaza. The chalazal cleft has been reported to be the water gap (i.e. location of initial water entry) in innately permeable seeds of Geraniaceae. The primary aim of this study was to re-evaluate the location of the water gap and to characterize its morphology and anatomy in physically dormant seeds of Geraniaceae, with particular reference to G. carolinianum.

Methods

Length, width, mass, anatomy and germination of two seed types (light brown and dark brown) of G. carolinianum were compared. Location, anatomy and morphology of the water gap were characterized using free-hand and microtome tissue sectioning, light microscopy, scanning electron microscopy, dye tracking, blocking and seed-burial experiments.

Key Results

Treatment with dry heat caused a colour change in the palisade cells adjacent to the micropyle. When placed in water, the ‘hinged valve’ (blister) erupted at the site of the colour change, exposing the water gap. The morphology and anatomy in the water-gap region differs from those of the rest of the seed coat. The morphology of the seed coat of the water-gap region is similar in G. carolinianum, G. columbinum, G. molle and G. pusillum and differs from that of the closely related species Erodium cicutarium.

Conclusions

Dislodgment of swollen ‘hinged valve’ palisade cells adjacent to the micropyle caused the water gap to open in physically dormant seeds of G. carolinianum, and it was clear that initial water uptake takes place through this gap and not via the chalazal opening as previously reported. This water gap (‘hinged valve gap’) differs from water gaps previously described for other families in morphology, anatomy and location in the seed coat.  相似文献   

16.
Viable seeds that do not imbibe water and thus fail to germinate in an apparently favorable environment are commonly termed impermeable or hard seed. This physical, exogenous dormancy is especially common in species of the Fabaceae. The ecological significance of hard seed includes the ability to rapidly recolonize burnt areas after fire and to withstand ingestion by animals and birds. Advantages and problems that hard seed cause in agriculture are discussed. Species from different families with impermeable seeds appear to have in common a layer of macrosclerid cells that form a palisade layer in the testa. The term strophiole and its contradictory use in botanical literature are discussed. Genetic factors and environmental conditions both affect the proportion of impermeable seeds produced. Methods of artificially softening impermeable seeds include acid and solvent, soaking, mechanical scarification, pressure, percussion, freezing, heating, and radiation treatments that can result in a change in germination from less than 20% in some untreated species up to 90% or more in treated species. Natural softening involves high temperatures and temperature fluctuations and the degree of desiccation of the seed. The mechanism of water impermeability is related to the testa and is thought to involve waterproofing substances including wax, lignin, tannin, suberin, pectin, and quinone derivatives. The hilum acts as a hygroscopic valve that prevents water uptake but allows water loss to occur at low relative humidities in some species. The strophiole is an area of weakness in the testa of some Papilionoideae while the chalaza region has been determined as an area of weakness inPisum andGossypium. The water impermeable status of some species is reversible at a seed moisture content greater than 10%. The hard seed of a species can be described both in terms of the amount and the degree of impermeability.  相似文献   

17.
砂仁种子的解剖学和组织化学研究   总被引:10,自引:0,他引:10  
砂仁种子包括假种皮、种皮、外胚乳、内胚乳与胚。假种皮由内表皮、外表皮及其间的6-9层薄壁细胞组成。种皮分为外种皮、中种皮与内种皮。外种皮由1层表皮细胞构成,其壁增厚并略木质化。中种皮包括各含1层细胞的下层皮和半透明细胞层与含3-5层细胞的色素层;下皮层与色素层细胞均含有红综色素,后者的壁呈网状增厚。内种皮由1层内切向壁与径向壁非常增厚的石细胞构成。种皮表面具有许多疣状突起,它们是体积较小的表皮细胞  相似文献   

18.
BACKGROUND AND AIMS: There is considerable confusion in the literature concerning impermeability of seeds with 'hard' seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. METHODS: The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. KEY RESULTS: A germination valve and a water channel are formed in the hilum-micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. CONCLUSIONS: Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae.  相似文献   

19.
BACKGROUND AND AIMS: Soybean (Glycine max) is among the many legumes that are well known for 'hardseededness'. This feature can be beneficial for long-term seed survival, but is undesirable for the food processing industry. There is substantial disagreement concerning the mechanisms and related structures that control the permeability properties of soybean seed coats. In this work, the structural component that controls water entry into the seed is identified. METHODS: Six soybean cultivars were tested for their seed coat permeabilities to water. To identify the structural feature(s) that may contribute to the determination of these permeabilities, fluorescent tracer dyes, and light and electron microscopic techniques were used. KEY RESULTS: The cultivar 'Tachanagaha' has the most permeable seed coat, 'OX 951' the least permeable seed coat, and the permeabilities of the rest ('Harovinton', 'Williams', 'Clark L 67-3469', and 'Harosoy 63') are intermediate. All seeds have surface deposits, depressions, a light line, and a cuticle about 0.2 microm thick overlaying the palisade layer. In permeable cultivars the cuticle tends to break, whereas in impermeable seeds of 'OX 951' it remains intact. In the case of permeable seed coats, the majority of the cracks are from 1 to 5 micro m wide and from 20 to 200 micro m long, and occur more frequently on the dorsal side than in other regions of the seed coat, a position that correlates with the site of initial water uptake. CONCLUSIONS: The cuticle of the palisade layer is the key factor that determines the permeability property of a soybean seed coat. The cuticle of a permeable seed coat is mechanically weak and develops small cracks through which water can pass. The cuticle of an impermeable seed coat is mechanically strong and does not crack under normal circumstances.  相似文献   

20.
Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.

Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号