首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyzed the motor photoresponses of Halobacterium salinarium to different test stimuli applied after a first photophobic response produced by a step-down of red-orange light (prestimulus). We observed that pulses given with a suitable delay after the prestimulus produced unusual responses. Pulses of blue, green, or red-orange light, each eliciting no response when applied alone, produced a secondary photophobic response when applied several seconds after the prestimulus; the same occurred with a negative blue pulse (rapid shut-off and turning on of a blue light). Conversely, no secondary photophobic response was observed when the test stimulus was a step (a step-up for red-orange light, a step-down for blue light) of the same wavelength and intensity. When the delay was varied, different results were obtained with different wavelengths; red-orange pulses were typically effective in producing a secondary photophobic response, even with a delay of 2 s, whereas the response to a blue pulse was suppressed when the test stimulus was applied within 5 s after the prestimulus. The secondary photophobic response to pulses was abolished by reducing the intensity of the prestimulus without affecting the primary photophobic response. These results, some of which were previously reported in the literature as inverse effects, must be produced by a facilitating mechanism depending on the prestimulus itself, the occurrence of reversals being per se ineffective. The fact that red-orange test stimuli are facilitated even at the shortest delay, whereas those of different wavelengths become effective only after several seconds, suggests that the putative mechanism of the facilitating effect is specific for different signaling pathways.  相似文献   

2.
Results are presented from full-scale numerical simulations of the excitation of wake waves by a sequence of weakly relativistic laser pulses in a subcritical plasma. Computations were carried out with a 2D3V version of the SUR-CA code that is based on the local-recursive nonlocal-asynchronous algorithm of the particle-in-cell method. The parameters of a train of laser pulses were chosen to correspond to the resonant excitation of the wake field. The curvature of the envelope of the pulses was chosen to depend on the number of the pulse in the train. Numerical simulations showed that there are plane waves during the first period of the plasma wave behind the pulse train.  相似文献   

3.
The fluence-response curve for first positive phototropic curvtureof dark-grown maize coleoptiles is shifted to ten-fold higherfluences if the coieoptiles are irradiated with red light 2h prior to the phototropic induction with blue light. Fluence-responsecurves for this red-induced shift were obtained with unilateralred irradiations 2 h prior to inductive blue pulses of differentfluences. They differ significantly depending on whether thered light was given from the same side as or the opposite sideto the respective inductive blue pulse, thus demonstrating thatthe red light effect is a local response of the coleoptile.The fluence-response curves for an inductive blue pulse in theascending part were compared with those for an inductive bluepulse in the descending part of the fluence-response curve forblue light induced phototropism. They are quite different inthreshold of red light sensitivity and shape for irradiationsfrom both the same and the opposite sides. This offers evidencefor the hypothesis that at least two different photosystemsare involved in phototropism, and that they are modulated differentlyby a red light preirradiation. All these fluence-response curvesindicate that it is possible to increase the response in thecoleoptile, if the red light preirradiation is given oppositeto the inductive blue pulse. This is supported by blue lightfluence-response curves obtained after a weak unilateral redpreirradiation. (Received September 11, 1986; Accepted October 18, 1986)  相似文献   

4.
5.
Guard cell protoplasts from Commelina communis L. illuminated with red light responded to a blue light pulse by an H+ extrusion which lasted for about 10 minutes. This proton extrusion was accompanied by an O2 uptake with a 4H+ to O2 ratio. The response to blue light was nil in darkness without a preillumination period of red light and increased with the duration of the red light illumination until about 40 minutes. However, acidification in response to a pulse of blue light was obtained in darkness when external NADH (1 millimolar) was added to the incubation medium, suggesting that redox equivalents necessary for the expression of the response to blue light in darkness may be supplied via red light. In accordance with this hypothesis, the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (10 micromolar) decreased the acidification in response to blue light more efficiently when it was added before red light illumination than before the blue light pulse. In the presence of hexacyanoferrate, the acidification in response to a blue light pulse was partly inhibited (53% of control), suggesting a competition for reducing power between ferricyanide reduction and the response to blue light.  相似文献   

6.
Effects of 15 min light pulses given at various intervals (every 1, 2, 4, 6, 8 and 12 hr) under constant darkness on the locomotor rhythm were investigated in the adult male cricket, Gryllus bimaculatus. A single pulse per 24 hr induced period modulation in a circadian phase dependent manner, yielding a period modulation curve (PMC): the 15 min light pulse lengthened the period in the early subjective night (CT11-16) and shortened it during the late subjective night to the early subjective day (CT20-5). Frequent light pulses modulated the freerunning period of the rhythm dependent on the interval of the pulses: when compared with the freerunning period in DD (23.74 +/- 0.03 hr) the period was significantly shorter in intervals of 2 and 4 hr, but lengthened when the interval was 1 and 12 hr. Frequent light pulses also resulted in entrainment of the rhythm to run with the period of 24 hr and the ratio of the entrained animals varied from 12% to 72% depending on the interval of the light pulses. The period modulation and the entrainment by the repetitive light pulses could be interpreted according to the PMC. In about 15% of animals, the light pulses induced a rhythm dissociation, suggesting that the bilaterally paired circadian pacemakers have their own sensitivity to the entraining photic information. The light pulse caused a masking effect, i.e., an intense burst of activity. The magnitude of the light induced responses was dependent on the circadian phase. The strongest masking effect was observed in the subjective night. The phase of the prominent period modulation and of the marked masking effects well coincides with the previously reported sensitive phase of the photoreceptive system.  相似文献   

7.
The control by light of the flowering response rhythm in the short-day plant Pharbitis nil Choisy cv. Violet was examined by giving a single pulse of light at various times between 1 and 6 h after a 24-h light period. When the first circadian cycle of the rhythm was monitored, it was found that a pulse of red light given at 1, 2 or 3 h into a 72-dark period caused a 1-h delay of the phase of the response rhythm, while a pulse at 6 h caused a 2-h delay. These results support the hypothesis that, when red-light pulses are given at hourly intervals, they are as effective as continuous light in preventing the onset of dark timing because they repeatedly return the rhythm to the circadian time at which it is apparently suspended in continuous light. The perception of and response to continuous light and red-light pulses are also briefly discussed.  相似文献   

8.
Phase responses to red and blue light pulses were measured at different times during the circadian cycle (phase response curves, PRC) in the marine unicellular dinoflagellate Gonyaulaxpolyedra Stein. Pulses were given during a 24-h period of darkness; thereafter, cultures were released into constant dim red light for the assessment of phase and period. The results confirmed earlier findings that the Gonyaulax circadian system receives light signals via two distinct input pathways. During the subjective day and for the first 3 h of the subjective night, red and blue light pulses led to identical phase responses. For the rest of the circadian cycle, however, phase responses to pulses of either red or blue light differed drastically both in their amplitude and direction (advances or delays). Thus, the Gonyaulax light PRC is generated by two distinct light responses. One of these represents responses via a light input that is responsive both to red and blue light mainly producing small delays. The other represents responses of a primarily blue-sensitive input system leading to large advances restricted to the subjective night. Via feed-back, the blue-sensitive light input appears to be under the control of the circadian system. Received: 27 November 1996/Accepted: 30 January 1997  相似文献   

9.
Blue light induces both depolarization of membrane potentialin the motor cell and turgor movement in the laminar pulvinusof bean plant. This paper describes the changes of electricpotential and turgor pressure induced in Phaseolus vulgarisL. by blue light pulses. A transient depolarization of membranepotential as large as 40 mV was induced by a short pulse of15 s blue light in motor cells of the laminar pulvinus. Thischange was not an action potential because of the absence ofa refractory period and threshold. The magnitudes of the responsewere dependent on the fluence of light. The response was long-lived,indicating that continuous input of light energy is not requiredfor a sustained response. The potential change was always followedby a transient turgor movement of the pulvinus. A molecular mechanism similar to a model postulated for theblue light response of stomata may operate in the motor cell.However, the direction of the electrical response to blue light(depolarization) in the motor cell was the opposite of thatin the guard cell (hyperpolarization). Turgor change of themotor cell by blue light was also opposite in direction (decrease). (Received February 19, 1988; Accepted June 28, 1988)  相似文献   

10.
以7690-Xu荧光染色法结合WuT3、WuT4、WuT8致敏红细胞花环实验观察经胸腺细胞分层液分离所得高密度亚群和低密度亚群人胎胸腺细胞的异质性荧光及其膜分化抗原CD3、CD4、CD8的表达。结果表明:不同胎龄胎儿胸腺细胞悬液呈现相似形态和相似分布特征的8种异质性荧光的细胞,其中,墨黑核细胞和桔红核细胞分布于两密度亚群,表型为CD3-CD4-CD8-;少数深蓝核和蓝核细胞分布于低密度亚群.表型为CD3+,属成熟的胸腺细胞;大多数深蓝核和蓝核细胞、灰蓝核细胞、灰黄核细胞及部分淡桔黄核细胞分布于高密度亚群,表型为CD3-、CD4+、CD8+,为处于中间发育阶段的胸腺细胞。推测这些细胞胞核由深蓝、蓝、灰蓝、灰黄到淡桔黄的荧光光谱的偏移可能与中间发育阶段所发生的生物及理化变化有关。  相似文献   

11.
Constant red light (RR) influences the Gonyaulax clock in several ways: (1) Phase resetting by white or blue light pulses is stronger under background RR than in constant white light (WW); (2) frequency of the rhythm is less in RR than in WW; and (3) the amplitude of the spontaneous flashing rhythm is greater in RR than in WW. The phase response curve (PRC) to 4-hr white or blue light pulses is of high amplitude (Type 0) for cells in RR, but is of lower amplitude (Type 1) for cells in WW. In all cases, the PRC is highly asymmetrical: The magnitude of advance phase resetting is far higher than that of delay resetting. Consistent with this PRC, Gonyaulax cells in RR (free-running period greater than 24 hr) will entrain to T cycles of between 21 and 26.5 hr. The bioluminescence rhythms exhibit "masking" by blue light pulses while entrained to these T cycles. The fluence response of phase resetting to light-pulse intensity is not linear or logarithmic--rather, it is discontinuous. This feature is consistent with a limit cycle interpretation of Type 0 resetting of circadian clocks. Light pulses that cause large phase shifts also shorten the subsequent free-running period. The phase angle difference between the clock and the previous LD cycle is within 2 hr of the same phase between 16 degrees C and 25 degrees C, as determined from the light PRCs at various temperatures. Several drugs that inhibit mitochondria and/or electron transport will partially inhibit the phase shift by light.  相似文献   

12.
Blue light induces extracellular acidification, a prerequisite of cell expansion, in epidermis cells of young pea leaves, by stimulation of the proton pumping-ATPase activity in the plasma membrane. A transient acidification, reaching a maximum 2.5-5 min after the start of the pulse, could be induced by pulses as short as 30 msec. A pulse of more than 3000 micromol m-2 saturated this response. Responsiveness to a second light pulse was recovered with a time constant of about 7 min. The fluence rate-dependent lag time and sigmoidal increase of the acidification suggested the involvement of several reactions between light perception and activation of the ATPase. In wild-type pea plants, the fluence response relation for short light pulses was biphasic, with a component that saturates at low fluence and one that saturates at high fluence. The phytochrome-deficient mutant pcd2 showed a selective loss of the high-fluence component, suggesting that the high-fluence component is phytochrome-dependent and the low-fluence component is phytochrome-independent. Treatment with the calmodulin inhibitor W7 also led to the elimination of the phytochrome-dependent high-fluence component. Simple models adapted from the one used to simulate blue light-induced guard cell opening failed to explain one or more elements of the experimental data. The hypothesis that phytochrome and a blue light receptor interact in a short-term photoresponse is endorsed by model calculations based upon a three-step signal transduction cascade, of which one component can be modulated by phytochrome.  相似文献   

13.
14.
ELF3 modulates resetting of the circadian clock in Arabidopsis   总被引:6,自引:0,他引:6       下载免费PDF全文
The Arabidopsis early flowering 3 (elf3) mutation causes arrhythmic circadian output in continuous light, but there is some evidence of clock function in darkness. Here, we show conclusively that normal circadian function occurs with no alteration of period length in elf3 mutants in dark conditions and that the light-dependent arrhythmia observed in elf3 mutants is pleiotropic on multiple outputs normally expressed at different times of day. Plants overexpressing ELF3 have an increased period length in both constant blue and red light; furthermore, etiolated ELF3-overexpressing seedlings exhibit a decreased acute CAB2 response after a red light pulse, whereas the null mutant is hypersensitive to acute induction. This finding suggests that ELF3 negatively regulates light input to both the clock and its outputs. To determine whether ELF3's action is phase dependent, we examined clock resetting by using light pulses and constructed phase response curves. Absence of ELF3 activity causes a significant alteration of the phase response curve during the subjective night, and constitutive overexpression of ELF3 results in decreased sensitivity to the resetting stimulus, suggesting that ELF3 antagonizes light input to the clock during the night. The phase of ELF3 function correlates with its peak expression levels in the subjective night. ELF3 action, therefore, represents a mechanism by which the oscillator modulates light resetting.  相似文献   

15.
The effects of environmental parameters on the blue light response of stomata were studied by quantifying transient increases in stomatal conductance in Commelina communis following 15 seconds by 0.100 millimole per square meter per second pulses of blue light. Because conductance increases were not observed following red light pulses of the same or greater (30 seconds by 0.200 millimole per square meter per second) fluences, the responses observed could be reliably attributed to the specific blue light response of the guard cells, rather than to guard cell chlorophyll. In both Paphiopedilum harrisianum, which lacks guard cell chloroplasts, and Commelina, the blue light response was enhanced by 0.263 millimole per square meter per second continuous background red light. Thus, the blue light response and its enhancement do not require energy derived from red-light-driven photophosphorylation by the guard cell chloroplasts. In Commelina, reduction of the intercellular concentration of CO2 by manipulation of ambient CO2 concentrations resulted in an enhanced blue light response. In both Commelina and Paphiopedilum, the blue light response was decreased by an increased vapor pressure difference. The magnitude of blue-light-specific stomatal opening thus appears to be sensitive to environmental conditions that affect the carbon and water status of the plant.  相似文献   

16.
The blue crab T fiber synapse, associated with the stretch receptor of the swimming leg, has a nonspiking presynaptic element that mediates tonic transmission. This synapse was isolated and a voltage clamp circuit was used to control the membrane potential at the release sites. The dependence of transmitter release on extracellular calcium, [Ca]o, was studied over a range of 2.5-40 mM. A power relationship of 2.7 was obtained between excitatory postsynaptic potential (EPSP) rate of rise and [Ca]o. Brief presynaptic depolarizing steps, 5-10 ms, presented at 0.5 Hz activated EPSP's of constant amplitude. Inserting a 300-ms pulse (conditioning pulse) between these test pulses potentiated the subsequent test EPSPs. This depolarization-activated potentiation (DAP) lasted for 10-20 s and decayed with a single exponential time course. The decay time course remained invariant with test pulse frequencies ranging from 0.11 to 1.1 Hz. The magnitude and decay time course of DAP were independent of the test pulse amplitudes. The magnitude of DAP was a function of conditioning pulse amplitudes. Large conditioning pulses activated large potentiations, whereas the decay time constants were not changed. The DAP is a Ca-dependent process. When the amplitude of conditioning pulses approached the Ca equilibrium potential, the magnitude of potentiation decreased. Repeated application of conditioning pulses, at 2-s intervals, did not produce additional potentiation beyond the level activated by the first conditioning pulse. Comparison of the conditioning EPSP waveforms activated repetitively indicated that potentiation lasted transiently, 100 ms, during a prolonged release. Possible mechanisms of the potentiation are discussed in light of these new findings.  相似文献   

17.
The time courses of photosynthetic rates in red light, with and without additional blue light, were investigated and compared in 20 species of brown algae. Species could be separated into two groups on the basis of the rhythmicity of their photosynthesis in red light and the kinetics of their responses to blue-light pulses. One group, which consisted of members of the Ectocarpales, Chordariales, and Dictyosiphonales, was characterized by strong and persistent circadian rhythmicity in red light. The photosynthetic responses of these species to blue-light pulses started within 10–30 s of the beginning of blue-light treatment and mostly contained at least two distinct kinetic components. An early component, which reached a maximum about 5–10 min after the blue-light pulse, was always detectable. Later components were seen as separate peaks or shoulders after an additional 10–20 min. The decay of the response in this group of species was mostly slow, with half-lives of between 0.5 and 1.5 h. In the second group of species, consisting of members of the Dictyotales, Laminariales, and Fucales, photosynthesis in red light was usually non-rhythmic, although circadian rhythms with a weak amplitude or of transient occurrence were observed in some plants of some species. The increase in photosynthesis in response to a blue-light pulse was not detectable until 70–330 s after the start of blue-light treatment, and the response itself had only a single component, with a maximum after about 10 min and half-life of 10–20 min. The lengths of the lag-phases were positively correlated with the times taken to reach the peak in this group, although the lag-phases and the half lives sometimes varied with time in individual plants. Two members of the Sphacelariales (Sphacelaria, Cladostephus) did not fit into either of the two groups because their photosynthesis was rhythmic, but their responses had long lag-phases, a single component, and moderately long half-lives. The differences in the kinetics of the photosynthetic response to blue-light pulses, which have been described for the two main groups of species, are thought to indicate that there are two distinct mechanisms by which light-saturated photosynthesis responds to blue light in brown algae. Since in some species the maximal photosynthesis after a blue-light pulse and the rate of photosynthesis in continuous blue light also varied in a circadian pattern, the response to blue light itself may be under circadian control.  相似文献   

18.
19.
Kataoka H 《Plant physiology》1979,63(6):1107-1110
Phototropic responses of a tip-growing coenocytic alga Vaucheria geminata to intermittent blue light pulses were analyzed. Curvatures caused by repeated light pulses separated by dark intervals of various lengths were as large as those obtained by continuous light of the same incident energy, unless the length of the dark interval exceeded a critical value of about 30 to 40 seconds. If the dark interval was longer than the critical length, bending no longer took place. Another response to intermittent irradiation was found. In a narrow range of light pulse and dark interval lengths, i.e. light pulses longer than 10 milliseconds and dark intervals shorter than a value ranging from 15 to 150 milliseconds, intermittent irradiation was more effective than continuous irradiation of the same total energy. In this region, the maximum response to repeated pulses was equal to the curvature caused by a continuous irradiation of the same total elapsed time. It is evident that in this condition the dark interval is not perceived and the alga responds as if it were in light. The results suggest that two different dark reactions may be involved in the phototropic response of this algal cell.  相似文献   

20.
Schmid R  Dring MJ 《Plant physiology》1993,101(3):907-913
In most brown algae, photosynthesis saturated with red light can be stimulated by continuous blue light. Pulses of blue light lead to transient increases in photosynthetic rate. When a CO2-sensitive electrode was used, occasionally blue light was observed to cause an apparent increase of CO2 instead of the expected decrease. This was changed by buffering the seawater medium and, under these conditions, blue light caused stimulation of CO2 consumption. These results led to investigations of blue-light-dependent pH changes at the outer surface of the plants. Shifts of the pH were recorded in the presence of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In all brown algae tested and in the green algae Ulva and Enteromorpha, blue-light pulses caused transient acidification of 0.03 to 0.18 pH units, depending on the species. The kinetics showed lag phases of a few seconds and the minimum was reached after 5 to 9 min. Fluence response relationships indicated that the sensitivity (threshold) to blue light was very similar in all species. The responses in Ectocarpus changed with time, and about 5 h after the beginning of red light or darkness, a second component became evident, which peaked 20 min after the blue-light pulse. The refractory period of the whole system was about 3 h in Ectocarpus. The blue-light-dependent pH changes show striking similarities to those of higher plant guard cells, and it is possible that similar responses may occur in other tissues of higher plants. In red algae, however, no blue-light-dependent acidifications could be detected. The possible role of the observed pH shifts in a mechanism of CO2 acquisition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号