首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertriglyceridemic hyperapoB is an adverse lipoprotein phenotype characterized by low high density lipoprotein (HDL) cholesterol, high triglycerides, high apolipoprotein B (ApoB), and low low density lipoprotein (LDL) cholesterol to ApoB ratio. We investigated whether and to what extent hypertriglyceridemic hyperapoB associates with the incidence and resolution of nonalcoholic fatty liver disease (NAFLD). This prospective cohort study included 9,019 Chinese participants 40 years or older, from 2010 to 2015. Logistic regression models were used to examine the odds ratios (ORs) for the incidence and resolution of NAFLD associated with the hypertriglyceridemic hyperapoB lipoprotein phenotype and individual lipid and lipoprotein parameters. During a median 4.3 years of follow-up, compared with participants with optimal phenotype, the fully adjusted ORs (95% CIs) for participants with hypertriglyceridemic hyperapoB were 2.75 (1.91, 3.95) and 0.57 (0.33, 1.00) for incidence and resolution of NAFLD, respectively. These associations were consistent across subgroup participants with varied demographic, lifestyle, and metabolic status. Individually, each unit increase in HDL cholesterol (OR: 0.98; 95% CI: 0.97, 0.99), natural logarithm-transformed triglycerides (1.89; 1.52, 2.36), and ApoB (1.006; 1.002, 1.011) was independently associated with NAFLD incidence, and only triglycerides (0.77; 0.60, 0.99) was independently associated with NAFLD resolution. Our findings suggest that Chinese adults with hypertriglyceridemic hyperapoB have a higher risk of NAFLD incidence and a lower likelihood of NAFLD resolution. These associations were stable among adults with different demographic, lifestyle, and metabolic status, supporting hypertriglyceridemic hyperapoB as a valuable clinical marker for the prevention and control of NAFLD.  相似文献   

2.
We measured the turnover and absorption of sitosterol and cholesterol, along with plasma sterol and lipoprotein concentrations, in one control and two subjects with sitosterolemia with xanthomatosis. All individuals consumed the same diet which contained approximately 500 mg/day of cholesterol and 250 mg/day of sitosterol. Sterol absorption was measured by the plasma dual-isotope ratio method and turnover by plasma isotope-kinetic analysis. In two sitosterolemic subjects, 28% and 63% of the sitosterol and 69% and 49% of the cholesterol were absorbed, respectively, compared to 4% of the sitosterol and 44% of the cholesterol in the control. As expected, plasma sitosterol specific activities decayed much more rapidly than cholesterol in the control subject. In contrast, plasma sitosterol and cholesterol specific activity-time curves were similar and decayed more slowly in the sitosterolemic subjects. In the control subject, the total sitotterol pool was 290 mg and was linearly related to low absorption (18 mg/day); whereas the total sitosterol pool was 17 times (4800 mg) and 13 times (3500 mg) larger, respectively, in the sitosterolemic subjects and was expanded out of proportion to increased absorption because of decreased removal. Daily cholesterol turnover and synthesis were markedly reduced in the sitosterolemic subjects. In four sitosterolemic subjects, plasma concentrations of total sterols, low density lipoproteins, and apolipoprotein B were increased, while those of high density lipoproteins and apolipoprotein A-I were low to normal. The low density lipoproteins were very similar to those of normal control subjects in density distribution, peak flotation rate, sterol-to-protein (apolipoprotein B) ratio, particle size, and morphology. These results demonstrate in patients with sitosterolemia with xanthomatosis that: 1) the absorption of sitosterol and cholesterol is enhanced; 2) tissue recognition between cholesterol and sitosterol is lost; 3) total exchangeable sitosterol pools are expanded out of proportion to absorption because of decreased excretion; 4) plasma sterol and lipoprotein concentrations favor tissue deposition; and 5) cholesterol synthesis is diminished. We postulate that the changes in sitosterol metabolism (increased absorption, loss of tissue sterol structural recognition, expanded pools, and hepatic retention) are a response to reduced cholesterol synthesis in these subject.  相似文献   

3.
Screening of 932 adults on the Pacific island of Kosrae for plasma plant sterol levels disclosed three subjects, two of them asymptomatic, with phytosterolemia. Sequencing the ATP binding cassette subfamily G member 8 (ABCG8) gene revealed a novel exon 2 mutation that causes a change in codon 24 from glutamine to histidine and a frame shift followed by a premature stop codon, precluding the formation of a functional ABCG8 protein. Genotyping of 1,090 Kosraens revealed 150 as carriers, a 13.8% carrier rate. DNA sequencing of 67 carriers revealed the same mutation as in the probands. In carriers, plasma campesterol and sitosterol levels were 55% and 30% higher, respectively, than in noncarriers. Moreover, compared with noncarriers, carriers showed 21% lower plasma levels of lathosterol, a surrogate marker for cholesterol biosynthesis. There was no difference between the groups in plasma total cholesterol, triglycerides, apolipoprotein B, or apolipoprotein A-I levels. In summary, on the island of Kosrae, a strong founder effect of a mutant ABCG8 allele results in a large number of carriers with increased plasma plant sterol levels and decreased lathosterol levels. The latter finding suggests that heterozygosity for a mutated ABCG8 allele results in a modest increase in dietary cholesterol absorption and a decrease in cholesterol biosynthesis.  相似文献   

4.
A pedigree consisting of 103 New Zealand White hyperlipidemic and normal rabbits was used in a genetic analysis of total cholesterol and triglyceride levels to test for Mendelian control of hyperlipidemia. The founder male of this pedigree was identified through hypercholesterolemia and evidence suggested vertical transmission of a hypercholesterolemic phenotype in this pedigree, although a combined hyperlipidemia phenotype (elevated cholesterol and triglycerides) also occurred in many descendents of the original founders. Segregation analysis of quantitative measures of total cholesterol and triglycerides in this pedigree was employed to test hypotheses about Mendelian control in the presence of substantial inbreeding. A simple Mendelian model was the best explanation for triglycerides in these animals. This best fitting model was essentially co-dominant with genotypic specific variances, where the heterozygote was hypertriglyceridemic and the mutant homozygote showed even more extreme values. The observed distribution of total cholesterol was also compatible with a mixture of distinct genotypic distributions, but there was evidence of non-Mendelian transmission in this pedigree. The observed hypertriglyceridemia in these animals may reflect an abnormality of very low density lipoprotein metabolism described previously. Further studies will be required to elucidate the genetic control of hypercholesterolemia and the associated combined hyperlipidemia in these rabbits.  相似文献   

5.
A potential in vitro cell culture model was developed for studies concerning the pathological effect of phytosterolemia in which liposomal phytosterols were incorporated into human skin fibroblasts and hepatoblastoma (HepG2) cells. After incubation with phytosterols, fibroblasts and HepG2 cells contained a significant amount (20-27%) of phytosterols (campesterol and beta-sitosterol). Phytosterol accumulation caused a significant reduction in the cholesterol content of cells. Labeled sitosterol and cholesterol showed similar uptake with lower esterification of sitosterol when compared to cholesterol. Labeled sitosterol incorporated into LDL was esterified to a greater extent than sitosterol added as straight liposome. About 23% of the labeled sitosterol was converted into acidic products and 5.6% was present as 5 alpha-stanols in HepG2 cells.  相似文献   

6.
Familial hypercholesterolaemia (FH), defined as the heritable occurrence of severe hypercholesterolaemia with cholesterol deposits in tendons and premature heart disease, is caused by at least four genes in sterol and lipoprotein pathways and displays varying gene-dose effects. The genes are the low-density lipoprotein (LDL) receptor, apolipoprotein (apo) B, proprotein convertase subtilisin/kexin 9, and the autosomal recessive hypercholesterolaemia (ARH) adaptor protein. All of these disorders have in common defective clearance of LDL within a complex system of lipid and lipoprotein metabolism and regulation. Normal cellular cholesterol and lipoprotein metabolism is reviewed before describing the disorders, their metabolic derangements and their clinical effects. FH is classified as two simplified phenotypes of disease according to the severity of the metabolic derangement. The dominantly inherited heterozygous phenotype comprises defects in the LDL receptor, apoB100, and neural apoptosis regulatory cleavage protein. The homozygous phenotype is co-dominant in defects of the LDL receptor, and occurs also as the ARH of adapter protein mutations. Defective binding of apoB100 does not result in a significant gene dose effect, but enhances the severity of heterozygotes for LDL receptor mutations. The genetic diagnosis of FH has provided greater accuracy in definition and detection of disease and exposes information about migration of populations. All of these disorders pose a high risk of atherosclerosis, especially in the homozygous phenotype. Studies of influences on the phenotype and responses to treatment are also discussed in the context of the metabolic derangements.  相似文献   

7.
We previously carried out genetic and metabolic studies in a partially inbred herd of pigs carrying cholesterol-elevating mutations. Quantitative pedigree analysis indicated that apolipoprotein (apo)B and a second major gene were responsible for the hypercholesterolemia in these animals. In this study, we assessed LDL receptor function by three different methods: ligand blots of liver membranes using beta-very low density lipoprotein (VLDL) as a ligand; low density lipoprotein (LDL)-dependent proliferation of T-lymphocytes; and direct binding of 125I-labeled LDL to cultured skin fibroblasts. All three methods demonstrated that LDL receptor ligands bound with decreased affinity to the LDL receptor in these animals. In skin fibroblasts from the hypercholesterolemic pigs, the Kd of binding was about 4-fold higher than in cells from normal pigs. The cDNA of the pig LDL receptor from normal and hypercholesterolemic pigs was isolated and sequenced. We identified a missense mutation that results in an Arg'Cys substitution at the position corresponding to Arg94 of the human LDL receptor. The mutation is in the third repeat of the ligand binding domain of the receptor. By single-stranded conformational polymorphism (SSCP) analysis, we studied the relationship between LDL receptor genotype and plasma cholesterol phenotype. In contrast to humans, the hypercholesterolemia associated with the LDL receptor mutation in pigs was expressed as a recessive trait. The LDL receptor mutation made a far more significant contribution to hypercholesterolemia than did the apoB mutation, consistent with observations made in human subjects with apoB mutations. Within each genotypic group (mutated apoB or mutated receptor), there was a wide range in plasma cholesterol. As the animals were on a well-controlled low-fat diet, this suggests that there are additional genetic factors that influence the penetrance of cholesterol-elevating mutations.  相似文献   

8.
Inheritance of total serum IgE (basal levels) in man.   总被引:7,自引:3,他引:4       下载免费PDF全文
Since allergic individuals with atopic allergy tend to have higher total serum IgE levels than do nonallergic subjects, family studies of total serum IgE levels are necessary in delineating the genetic and environmental factors involved in the expression of allergic disease. However, previous studies do not agree as to the genetic basis of total IgE production. To try to resolve this conflict, a total of 278 individuals from 42 nuclear families ascertained for large family size (at least four children) were studied. The families were not selected for the presence of allergic disease. Segregation analysis showed that the mixed model of recessive inheritance of high levels was most appropriate for these data--with approximately 36% of the total phenotypic variation in log[IgE] attributable to genetic factors, equally divided between a Mendelian component and a more general polygenic component. Thus, these data suggest some role for Mendelian control of basal IgE levels, but there is significant familial aggregation in IgE levels over and above that due to a Mendelian factor.  相似文献   

9.
The ligand-binding domain of low-density lipoprotein (LDL) is composed of seven 40-amino-acid repeats encoded by exons 2–6. Previous studies identified a missense mutation in codon 66 of exon 3, which resulted in the production of LDL receptor protein that is not processed to its mature form. In the current investigation, we documented the presence of two identical mutant LDL receptor alleles (Trp66→ Gly) in two familial hypercholesterolemia (FH) probands, II-1 and II-2, associated with markedly elevated plasma LDL cholesterol (17.22 ± 0.78 and 11.95 ± 0.24 mmol/liter, respectively). Functional assays of their fibroblast LDL receptor showed inefficient binding (39 and 50%), internalization (33 and 37%), and degradation (32 and 37%) compared with controls. The contribution of the apo B gene to variation in LDL levels was virtually eliminated given the normal ligand interaction with cell surface receptors and the absence of the mutation occurring in codon 3500 of the apo B gene. Similarly, the homozygous apo E3/E3wildtype phenotype excluded any genetic contribution of apo E to the lipoprotein abnormalities. Furthermore, the LPL mutations commonly observed in French Canadians could not account for the observed lipid alterations. Several alterations in lipoprotein composition characterized VLDL, IDL, LDL, HDL2, and HDL3fractions. Moreover, defective intestinal fat transport was observed in both probands (II-1 and II-2). Thus, the disturbance of lipoprotein concentration, composition, size, and metabolism may in part be related to the exon 3 mutation (Trp66→ Gly) of the LDL receptor gene. The biochemical phenotype was more severe in the father (I-1) than in the mother (I-2), and in the younger homozygous proband (II-1) than in the older (II-2). The greater severity was associated with a higher LDL cholesterol/HDL cholesterol ratio. Whether the differences between the two probands are due to polygenic factors or to a metabolic consequence of a major nonallelic trait is unknown. Nevertheless, the present biochemical findings stress the extent of the lipid abnormalities associated with homozygous FH and the importance of the phenotypic variability encountered even among subjects carrying the same mutation.  相似文献   

10.
To explore the mechanisms of the profound plasma cholesterol elevations in familial homozygous hypercholesterolemia (type IIa), cholesterol turnover, sterol balance, cholesterol absorption, and low density lipoprotein studies were carried out under controlled dietary conditions in two sisters (aged 13 and 16). Cholesterol turnover was prolonged. The half-life of the first exponential of the plasma cholesterol specific activity decay curve was double that of normal adults. The rate constants for the removal of cholesterol from pool A (KAA = 0.0652) and for the excretion of cholesterol from the system (Kaa = 0.0197) were less than half of normal. The production rates of cholesterol were low, only 6.30 and 6.86 mg/kg per day as measured by cholesterol turnover and sterol balance techniques, respectively. Fecal neutral steroid and bile acid excretion were 5.22 and 1.64 mg/kg per day, which is remarkably low in comparison to those of normal and heterozygous children. Cholesterol absorption was within the upper limit of the values reported for normal adults. THE HDL cholesterol values were extremely low (27 mg/dl) in contrast to profoundly elevated LDL levels. The fractional catabolic rate of LDL (0.127 per day) and the rate of synthesis and catabolism of apo-LDL (15 mg/kg per day) were low in comparison to previously reported values in homozygotes. These composite data indicated that the definable metabolic defects of these two sisters with homozygous familial hypercholesterolemia were the sluggish clearance of cholesterol from the body coupled with low total body synthesis of cholesterol.  相似文献   

11.
The capacity of acyl-CoA:cholesterol O-acyltransferase (ACAT) 2 to differentiate cholesterol from the plant sterol, sitosterol, was compared with that of the sterol esterifying enzymes, ACAT1 and lecithin:cholesterol acyltransferase (LCAT). Cholesterol-loaded microsomes from transfected cells containing either ACAT1 or ACAT2 exhibited significantly more ACAT activity than their sitosterol-loaded counterparts. In sitosterol-loaded microsomes, both ACAT1 and ACAT2 were able to esterify sitosterol albeit with lower efficiencies than cholesterol. The mass ratios of cholesterol ester to sitosterol ester formed by ACAT1 and ACAT2 were 1.6 and 7.2, respectively. Compared with ACAT1, ACAT2 selectively esterified cholesterol even when sitosterol was loaded into the microsomes. To further characterize the difference in sterol specificity, ACAT1 and ACAT2 were compared in intact cells loaded with either cholesterol or sitosterol. Despite a lower level of ACAT activity, the ACAT1-expressing cells esterified 4-fold more sitosterol than the ACAT2 cells. The data showed that compared with ACAT1, ACAT2 displayed significantly greater selectively for cholesterol compared with sitosterol. The plasma cholesterol esterification enzyme lecithin:cholesterol acyltransferase was also compared. With recombinant high density lipoprotein particles, the esterification rate of cholesterol by LCAT was only 15% greater than for sitosterol. Thus, LCAT was able to efficiently esterify both cholesterol and sitosterol. In contrast, ACAT2 demonstrated a strong preference for cholesterol rather than sitosterol. This sterol selectivity by ACAT2 may reflect a role in the sorting of dietary sterols during their absorption by the intestine in vivo.  相似文献   

12.
Familial ligand-defective apolipoprotein B-100 is characterized by elevated plasma low-density lipoprotein levels and premature heart disease. This study aims to determine apolipoprotein B gene mutations among Malaysians with clinical diagnoses of familial hypercholesterolemia and to compare the phenotype of patients with apolipoprotein B gene mutations to those with a low-density lipoprotein receptor gene mutation. A group of 164 patients with a clinical diagnosis of familial hypercholesterolemia was analyzed. Amplicons in exon 26 and exon 29 of the apolipoprotein B gene were screened for genetic variants using denaturing gradient high-performance liquid chromatography; 10 variants were identified. Five novel mutations were detected (p.Gln2485Arg, p.Thr3526Ala, p.Glu3666Lys, p.Tyr4343CysfsX221, and p.Arg4297His). Those with familial defective apolipoprotein had a less severe phenotype than those with familial hypercholesterolemia. An apolipoprotein gene defect is present among Malaysian familial hypercholesterolemics. Those with both mutations show a more severe phenotype than those with one gene defect.  相似文献   

13.
Male Wistar rats were injected intravenously with 2 mL of Intralipid containing 7.5 x 10(5) counts per minute (cpm) [14C]cholesterol and 7.5 x 10(5) cpm beta-[3H]sitosterol. Blood was withdrawn immediately and at 5, 10, 20, 60, 120, and 1440 min after injection from different animals. Plasma and red cells were separated and washed by conventional centrifugation, while lipoprotein density classes corresponding to chylomicrons, very low (VLDL), low (LDL), and high density lipoproteins (HDL) were isolated by ultracentrifugation. Total lipid and sterol compositions were determined by thin-layer chromatography in combination with gas-liquid chromatography, whereas radioactivity was measured by scintillation counting. The ratio of [14C]cholesterol/beta-[3H]sitosterol rose from 1 to 3.65 in the plasma VLDL fraction, whereas that in the LDL and HDL fractions were equilibrated at about 2, following an initial transient increase in favour of cholesterol. The appearance and disappearance of the radioactivity from LDL and HDL fractions exhibited precursor-product relationship owing probably to the conversion of the Intralipid into an intermediate lipoprotein-X-like particle, which possesses a density similar to that of LDL. The radioactive cholesterol and beta-sitosterol were incorporated into the red blood cell membranes at nearly similar initial rates, while at later times the incorporation of cholesterol was much preferred.  相似文献   

14.
Kifafa is the Swahili name for an epileptic seizure disorder, first reported in the early 1960s, that is prevalent in the Wapogoro tribe of the Mahenge region of Tanzania in eastern Africa. A 1990 epidemiological survey of seizure disorders in this region reported a prevalence in the range of 19/1,000-36/1,000, with a mean age at onset of 11.6 years; 80% of those affected had onset prior to 20 years of age. A team of investigators returned to Tanzania in 1992 and collected data on > 1,600 relatives of 26 probands in 20 kifafa families. We have undertaken a genetic analysis of these data in order to detect the presence of familial clustering and whether such aggregation could be attributed to genetic factors. Of the 127 affected individuals in these pedigrees, 23 are first-degree relatives (parent, full sibling, or offspring) of the 26 probands; 20 are second-degree relatives (half-sibling, grandparent, uncle, or aunt). When corrected for age, the risk to first-degree relatives is .15; the risk to second-degree relatives is .063. These risks are significantly higher than would be expected if there were no familial clustering. Segregation analysis, using PAP (rev.4.0), was undertaken to clarify the mode of inheritance. Among the Mendelian single-locus models, an additive model was favored over either a dominant, recessive, or codominant model. The single-locus model could be rejected when compared with the mixed Mendelian model (inclusion of a polygenic background), although the major-gene component tends to be recessive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Familial hypercholesterolemia (FH) is a common inherited disorder of metabolism characterized clinically by high levels of low-density lipoprotein (LDL) in plasma owing to reduced catabolism. This leads to accelerated atherosclerosis and thus to an increased risk of coronary heart disease. FH is usually caused by defects in the gene for either the LDL receptor or apolipoprotein B (apoB), the ligand for the LDL receptor. Elsewhere, we have described two unrelated patients with phenotypic homozygous FH. Both patients were offspring of consanguineous unions, and linkage to either the gene for the LDL receptor or the gene for apoB was excluded in both. Their cells in culture do not degrade LDL, despite the presence of normal surface binding of LDL to the LDL receptor. This observation suggests that the patients may be homozygous for a defective gene that encodes a component of the internalization pathway. We first excluded linkage of the defect to known genes for proteins reported to be involved in internalization of receptors in clathrin-coated pits. We then performed genomewide homozygosity mapping. Genotyping of 500 polymorphic markers in three affected and seven unaffected members of the first pedigree showed that recessive hypercholesterolemia in this family is localized to a single chromosomal region on 1p36-p35. Genotyping of two affected and five unaffected members of the second pedigree provided further evidence of linkage to this locus, thereby mapping the disease-causing gene to a 12-cM region on chromosome 1p36-p35, with a combined LOD score of 5.3 in these unrelated families. Identification of the gene in this region may lead to new insights into the mechanisms of LDL receptor-mediated uptake of LDL by cells and may help to identify further genetic risk factors for premature atherosclerosis.  相似文献   

16.
A comprehensive assessment of lipoprotein compositional/metabolic response to incremental caloric ethanol (EtOH) doses ranging from low to moderate to high was undertaken using male squirrel monkeys. Control monkeys were maintained on a chemically defined, isocaloric liquid diet, while experimental primates wee fed increasing doses of alcohol (6, 12, 18, 24, 30, and 36% of energy) substituted isocalorically for carbohydrate at 3-month intervals. Liver function tests and plasma triglyceride were normal for all animals. Plasma cholesterol showed a transient increase at the 12% caloric dose that was attributed solely to an increase in high density lipoprotein (HDL). A more pronounced increase in plasma sterol, beginning at 24% and continuing to 36% EtOH, was the result of increments in both HDL and low density lipoprotein (LDL) cholesterol, although the contribution by the latter was substantial primarily at the 36% dose. Plasma apolipoprotein elevations (HDL apolipoprotein A-I, LDL apolipoprotein B) generally accompanied the lipoprotein lipid increases, although the first atherogenic response for LDL became manifest as a significant increase in apolipoprotein B at 18% EtOH calories. Postheparin plasma lipoprotein lipase was not affected by dietary alcohol, whereas hepatic triglyceride lipase activity showed significant increases at higher (24 and 36%) EtOH doses. Plasma lecithin-cholesterol acyltransferase activity was normal at the 6 and 12% EtOH doses, but exhibited a significant reduction beginning at 18% and continuing to 36% EtOH. Alterations in these key lipoprotein regulatory enzymes may represent the underlying metabolic basis for the observed changes in lipoprotein levels and our earlier findings of HDL2/HDL3 subfraction modifications. Results from our study indicate that in squirrel monkeys, moderate (12%) EtOH caloric intake favors an antiatherogenic lipoprotein profile (increases HDL, normal LDL levels, and lecithin-cholesterol acyltransferase activity), whereas higher doses (24-36%) produce both coronary-protective (increases HDL) and atherogenic (increases LDL) responses. Moreover, the 18% EtOH level represents an important transition dose which signals early adverse alterations in lipoprotein composition (increases apolipoprotein B) and metabolism (decreases lecithin-cholesterol acyltransferase).  相似文献   

17.
Twelve obligate heterozygotes from two kindreds were ascertained through phytosterolemic probands homozygous for molecular defects in the ATP binding cassette (ABC) half transporter, ABCG8. The response of these heterozygotes to a Step 1 diet low in fat, saturated fat, and cholesterol, and to 2.2 g daily of plant sterols (as esters) was determined in Protocol I (16 weeks) and Protocol II (28 weeks) during three consecutive feeding periods: Step 1/placebo spread; Step 1/plant sterol spread; and Step 1/placebo spread (washout). At baseline, half the heterozygotes had moderate dyslipidemia and one-third had mildly elevated campesterol and sitosterol levels. On the Step 1/placebo spread, mean LDL cholesterol decreased significantly, 11.2% in Protocol I (n = 12), and 16.0% in Protocol II (n = 7). Substitution with plant sterol spread produced a significant treatment effect on LDL levels in Protocols I and II. Conversely, the mean levels of campesterol and sitosterol increased 119% and 54%, respectively, during the use of plant sterol spread for 6 weeks in Protocol I, an effect mirrored for 12 weeks in Protocol II. During the placebo spread washouts, LDL levels increased, while those of plant sterols decreased to baseline levels in both protocols. In conclusion, phytosterolemic heterozygotes respond well to a Step 1 diet, and their response to a plant sterol ester challenge appears similar to that observed in normals.  相似文献   

18.
Japanese-Americans have an increased prevalence of non-insulin-dependent diabetes mellitus and coronary heart disease when compared to native Japanese. This increase has been associated with fasting hyperinsulinemia, hypertriglyceridemia, and low plasma levels of high-density lipoprotein (HDL) cholesterol. The purpose of this study was to examine the relationship of both visceral adiposity and insulin resistance to this metabolic syndrome and to the presence of a predominance of small, dense low-density lipoprotein (LDL) particles (LDL subclass phenotype B) that has been associated with increased atherogenic risk. Six Japanese-American men with non-insulin-dependent diabetes, each receiving an oral sulfonylurea, were selected. One or 2 nondiabetic Japanese-American men, matched by age and body mass index, were selected for each diabetic subject, giving a total of 9 nondiabetic men. Diabetic subjects had significantly higher fasting plasma glucose (p=0.0007) and lower insulin sensitivity (SI, p=0.018) using the minimal model technique than nondiabetic subjects matched for body mass index. Six men (2 with diabetes) had LDL phenotype A and 8 (4 with diabetes) had phenotype B. One nondiabetic subject had an intermediate low-density lipoprotein pattern. Significantly greater amounts of intra-abdominal fat (p=0.045) measured by computed tomography were found in the men with phenotype B while fasting insulin (p=0.070) and triglycerides (p=0.051) tended to be higher. Intra-abdominal fat was significantly correlated with SI (r=-0.559), plasma triglycerides (r=0.541), plasma free fatty acids (r=0.677), LDL density (relative flotation rate, r=-0.803), and plasma HDL-cholesterol (r=-0.717). SI was significantly correlated only with plasma free fatty acids (r=-0.546) and tended to be correlated with hepatic lipase activity (r=-0.512, p=0.061). In conclusion, these observations indicate that in non-obese Japanese-American men, the metabolic features of the so-called insulin resistance syndrome, including LDL phenotype B, are more strongly correlated with visceral adiposity than with SI. It may therefore be more appropriate to call this the visceral adiposity syndrome. Although questions concerning mechanisms still remain, we postulate that visceral adiposity plays a central role in the development of many of the metabolic abnormalities, including LDL subclass phenotype B, that occur in this metabolic syndrome.  相似文献   

19.
The ability of mitogenic stimulation of human T lymphocytes to alter the expression of genes involved in sterol metabolism was examined. Messenger RNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and low density lipoprotein (LDL) receptor were quantified in resting and mitogen-stimulated T lymphocytes by nuclease protection assay. Mitogenic stimulation increased HMG-CoA synthase mRNA levels by 5-fold and LDL receptor by 4-fold when cells were cultured in lipoprotein-depleted medium whereas HMG-CoA reductase gene expression was not significantly increased. When cultures were supplemented with concentrations of low density lipoprotein sufficient to saturate LDL receptors, expression of all three genes was inhibited in resting lymphocytes, as effectively as was noted with fibroblasts. Similarly, LDL down-regulated gene expression in mitogen-activated lymphocytes so that mitogenic stimulation did not increase either HMG-CoA reductase or synthase mRNA levels, although LDL receptor gene expression was enhanced. These results indicate that expression of three of the genes involved in sterol metabolism is differentially regulated by LDL and mitogenic stimulation. Moreover, the increase in rates of endogenous sterol synthesis and the activity of HMG-CoA reductase in mitogen-stimulated T lymphocytes cannot be accounted for by increases in HMG-CoA reductase mRNA levels.  相似文献   

20.
There is a growing body of evidence supporting the roles of small, dense LDL and plasma triglyceride (TG), both features of the atherogenic lipoprotein phenotype, as risk factors for coronary heart disease. Although family studies and twin studies have demonstrated genetic influences on these risk factors, the specific genes involved remain to be determined definitively. The purpose of this study was to investigate genetic linkage between LDL size, TG, and related atherogenic lipoproteins and candidate genes known to be involved in lipid metabolism. The linkage analysis was based on a sample of 126 DZ women twin pairs, which avoids the potentially confounding effects of both age and gender, by use of a quantitative sib-pair linkage-analysis approach. Eight candidate genes were examined, including those for microsomal TG-transfer protein (MTP), hepatic lipase, hormone-sensitive lipase, apolipoprotein (apo) B, apo CIII, apo E, insulin receptor, and LDL receptor. The analysis suggested genetic linkage between markers for the apo B gene and LDL size, plasma levels of TG, of HDL cholesterol, and of apo B, all features of the atherogenic lipoprotein phenotype. Furthermore, evidence for linkage was maintained when the analysis was limited to women with a major LDL-subclass diameter >255 A, indicating that the apo B gene may influence LDL heterogeneity in the intermediate-to-large size range. In addition, linkage was found between the MTP gene and TG, among all the women. These findings add to the growing evidence for genetic influences on the atherogenic lipoprotein phenotype and its role in genetic susceptibility to atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号