首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analyses of the dynamics of diseases in wild populations typically assume all individuals to be identical. However, profound effects on the long-term impact on the host population can be expected if the disease has age and sex dependent dynamics. The Phocine Distemper Virus (PDV) caused two mass mortalities in European harbour seals in 1988 and in 2002. We show the mortality patterns were highly age specific on both occasions, where young of the year and adult (>4 yrs) animals suffered extremely high mortality, and sub-adult seals (1-3 yrs) of both sexes experienced low mortality. Consequently, genetic differences cannot have played a main role explaining why some seals survived and some did not in the study region, since parents had higher mortality levels than their progeny. Furthermore, there was a conspicuous absence of animals older than 14 years among the victims in 2002, which strongly indicates that the survivors from the previous disease outbreak in 1988 had acquired and maintained immunity to PDV. These specific mortality patterns imply that contact rates and susceptibility to the disease are strongly age and sex dependent variables, underlining the need for structured epidemic models for wildlife diseases. Detailed data can thus provide crucial information about a number of vital parameters such as functional herd immunity. One of many future challenges in understanding the epidemiology of the PDV and other wildlife diseases is to reveal how immune system responses differ among animals in different stages during their life cycle. The influence of such underlying mechanisms may also explain the limited evidence for abrupt disease thresholds in wild populations.  相似文献   

2.
We present new and revised data for the phocine distemper virus (PDV) epidemics that resulted in the deaths of more than 23 000 harbour seals Phoca vitulina in 1988 and 30,000 in 2002. On both occasions the epidemics started at the Danish island of Anholt in central Kattegat, and subsequently spread to adjacent colonies in a stepwise fashion. However, this pattern was not maintained throughout the epidemics and new centres of infection appeared far from infected populations on some occasions: in 1988 early positive cases were observed in the Irish Sea, and in 2002 the epidemic appeared in the Dutch Wadden Sea, 6 wk after the initiation of the outbreak at Anholt Island. Since the harbour seal is a rather sedentary species, such 'jumps' in the spread among colonies suggest that another vector species could have been involved. We discussed the role of sympatric species as disease vectors, and suggested that grey seal populations could act as reservoirs for PDV if infection rates in sympatric species are lower than in harbour seals. Alternatively, grey seals could act as subclinical infected carriers of the virus between Arctic and North Sea seal populations. Mixed colonies of grey and harbour seal colonies are found at all locations where the jumps occurred. It seems likely that grey seals, which show long-distance movements, contributed to the spread among regions. The harbour seal populations along the Norwegian coast and in the Baltic escaped both epidemics, which could be due either to genetic differences among harbour seal populations or to immunity. Catastrophic events such as repeated epidemics should be accounted for in future models and management strategies of wildlife populations.  相似文献   

3.
Haptoglobin (Hp) which is synthesized in response to infection, inflammation, trauma or toxicological damage is known as a major acute phase protein in numerous species. Quantification of the circulating concentration of this protein can provide an objective measure of the health status, but there is a lack of investigations on harbour seals. We investigated the Hp concentration in samples of 123 seals (Phoca vitulina) from the German and Danish Wadden Sea to study physiological ranges of Hp levels. Hp levels between 2002, the end of the phocine distemper virus epidemic (PDV), and 2007 were considered, and Hp concentrations between animals of different sex, ages as well as living areas were compared. Furthermore, as a case study, six animals from the open sea isle Helgoland were investigated in 2006. Influences on the health status of the seal population e.g. the PDV epidemic were reflected by increased Hp levels in North Sea seals in 2002. The results of the Wadden Sea seals showed no significant age-, sex-, or geographical area-related differences. Interestingly, for the seals of the open sea isle Helgoland higher Hp values were measured compared to the Wadden Sea seals. The present study demonstrates that Hp can be used as a diagnostic tool to monitor the health status of harbour seals.  相似文献   

4.
The 2002 European seal plague: epidemiology and population consequences   总被引:1,自引:0,他引:1  
We present the first epidemiological data on the 2002 outbreak of phocine distemper virus (PDV) in European harbour seals (Phoca vitulina). The epizootic curve to date supports a mortality rate and probability of infection identical to that of the 1988 outbreak, which killed 58% of the population. Thus immunity is playing no significant role in the dynamics of the current outbreak. Because the timing of the outbreak is important in determining local mortality rates, we predict higher mortality rates on the European continent than in Great Britain or Ireland. A stochastic model is used to quantify how recurrent epizootics affect the long‐term growth, fluctuation, and persistence of the population. Recurrent PDV epizootics with the observed frequency and severity would reduce the long‐term stochastic growth rate of the harbour seal population by half, and significantly increase the risk of quasi‐extinction.  相似文献   

5.

Background

Outbreaks of phocine distemper virus (PDV) in Europe during 1988 and 2002 were responsible for the death of around 23,000 and 30,000 harbour seals, respectively. These epidemics, particularly the one in 2002, provided an unusual opportunity to estimate epidemic parameters for a wildlife disease. There were marked regional differences in the values of some parameters both within and between epidemics.

Methodology and Principal Findings

We used an individual-based model of seal movement that allowed us to incorporate realistic representations of space, time and animal behaviour into a traditional epidemiological modelling framework. We explored the potential influence of a range of ecological (foraging trip duration, time of epidemic onset, population size) and epidemiological (length of infectious period, contact rate between infectious and susceptible individuals, case mortality) parameters on four readily-measurable epidemic characteristics (number of dead individuals, duration of epidemic, peak mortality date and prevalence) and on the probability that an epidemic would occur in a particular region. We analysed the outputs as if they were the results of a series of virtual experiments, using Generalised Linear Modelling. All six variables had a significant effect on the probability that an epidemic would be recognised as an unusual mortality event by human observers.

Conclusions

Regional and temporal variation in contact rate was the most likely cause of the observed differences between the two epidemics. This variation could be a consequence of differences in the way individuals divide their time between land and sea at different times of the year.  相似文献   

6.
Heterogeneities in transmission among hosts can be very important in shaping infectious disease dynamics. In mammals with strong social organization, such heterogeneities are often structured by functional stage: juveniles, subadults and adults. We investigate the importance of such stage-related heterogeneities in shaping the 2002 phocine distemper virus (PDV) outbreak in the Dutch Wadden Sea, when more than 40 per cent of the harbour seals were killed. We do this by comparing the statistical fit of a hierarchy of models with varying transmission complexity: homogeneous versus heterogeneous mixing and density- versus frequency-dependent transmission. We use the stranding data as a proxy for incidence and use Poisson likelihoods to estimate the ‘who acquires infection from whom’ (WAIFW) matrix. Statistically, the model with strong heterogeneous mixing and density-dependent transmission was found to best describe the transmission dynamics. However, patterns of incidence support a model of frequency-dependent transmission among adults and juveniles. Based on the maximum-likelihood WAIFW matrix estimates, we use the next-generation formalism to calculate an R0 between 2 and 2.5 for the Dutch 2002 PDV epidemic.  相似文献   

7.
A model has been formulated in [6] to describe the spatial spread of an epidemic involving n types of individual, and the possible wave solutions at different speeds were investigated. The final size and pandemic theorems are now established for such an epidemic. The results are relevant to the measles, host-vector, carrier-borne epidemics, rabies and diseases involving an intermediate host. Diseases in which some of the population is vaccinated, and models that divide the population into several strata are also covered.  相似文献   

8.
The spread of plague epizootics in areas with natural plague foci, including Rhombomys opimus settlements, is usually studied in the course of annual epizootiological observations. Direct studies on the structure of epizootics and parameters of their spread are labor-intensive and, therefore, rare. Nevertheless, a number of authors have performed such studies using different methods, which made it possible to accumulate a certain factual material. This material has provided a basis for a computer model of the epizootic process in R. opimus settlements with interactively adjustable parameters. Mathematically, the model is based on a probabilistic cellular automation. The model conceptually deals with the same types of settlements as in nature: settlements with acute development of the disease, settlements with a certain proportion of immune individuals among rodents, and those not affected by an epizootic and representing a reserve for its further development. The groups of colonies (microfoci) separated from each other and unevenly distributed in the working space of the model are clearly distinguished. The epizootic process in the working space of the model shows more or less ordered cyclic fluctuations, which resemble the curve of epizootic activity in nature, and advances at a rate of 150 m to 1.5 km per 1.7–2.7 months, which well agrees with parameters recorded in field experiments with isotope-tagged animals and in the course of direct observations on the epizootic process in nature Thus, the main characteristics of the model epizootic process are quantitatively and qualitatively close to its natural analogue, which is evidence that the proposed model is conceptually correct and adequate.  相似文献   

9.
We present a susceptibles-exposed-infectives (SEI) model to analyze the effects of seasonality on epidemics, mainly of rabies, in a wide range of wildlife species. Model parameters are cast as simple allometric functions of host body size. Via nonlinear analysis, we investigate the dynamical behavior of the disease for different levels of seasonality in the transmission rate and for different values of the pathogen basic reproduction number (R(0)) over a broad range of body sizes. While the unforced SEI model exhibits long-term epizootic cycles only for large values of R(0), the seasonal model exhibits multiyear periodicity for small values of R(0). The oscillation period predicted by the seasonal model is consistent with those observed in the field for different host species. These conclusions are not affected by alternative assumptions for the shape of seasonality or for the parameters that exhibit seasonal variations. However, the introduction of host immunity (which occurs for rabies in some species and is typical of many other wildlife diseases) significantly modifies the epidemic dynamics; in this case, multiyear cycling requires a large level of seasonal forcing. Our analysis suggests that the explicit inclusion of periodic forcing in models of wildlife disease may be crucial to correctly describe the epidemics of wildlife that live in strongly seasonal environments.  相似文献   

10.
Disease can generate intense selection pressure on host populations, but here we show that acquired immunity in a population subject to repeated disease outbreaks can impede the evolution of genetic disease resistance by maintaining susceptible genotypes in the population. Interference between the life-history schedule of a species and periodicity of the disease has unintuitive effects on selection intensity, and stochasticity in outbreak period further reduces the rate of spread of disease-resistance alleles. A general age-structured population genetic model was developed and parameterized using empirical data for phocine distemper virus (PDV) epizootics in harbor seals. Scenarios with acquired immunity had lower levels of epizootic mortality compared with scenarios without acquired immunity for the first PDV outbreaks, but this pattern was reversed after about five disease cycles. Without acquired immunity, evolution of disease resistance was more rapid, and long-term population size variation is efficiently dampened. Acquired immunity has the potential to significantly influence rapid evolutionary dynamics of a host population in response to age-structured disease selection and to alter predicted selection intensities compared with epidemiological models that do not consider such feedback. This may have important implications for evolutionary population dynamics in a range of human, agricultural, and wildlife disease settings.  相似文献   

11.
Disease spread has traditionally been described as a traveling wave of constant velocity. However, aerially dispersed pathogens capable of long-distance dispersal often have dispersal gradients with extended tails that could result in acceleration of the epidemic front. We evaluated empirical data with a simple model of disease spread that incorporates logistic growth in time with an inverse power function for dispersal. The scale invariance of the power law dispersal function implies its applicability at any spatial scale; indeed, the model successfully described epidemics ranging over six orders of magnitude, from experimental field plots to continental-scale epidemics of both plant and animal diseases. The distance traveled by epidemic fronts approximately doubled per unit time, velocity increased linearly with distance (slope ~½), and the exponent of the inverse power law was approximately 2. We found that it also may be possible to scale epidemics to account for initial outbreak focus size and the frequency of susceptible hosts. These relationships improve understanding of the geographic spread of emerging diseases, and facilitate the development of methods for predicting and preventing epidemics of plants, animals, and humans caused by pathogens that are capable of long-distance dispersal.  相似文献   

12.
A pneumonia epidemic reduced bighorn sheep (Ovis canadensis) survival and recruitment during 1997-2000 in a population comprised of three interconnected wintering herds (Kenosha Mountains, Sugarloaf Mountain, Twin Eagles) that inhabited the Kenosha and Tarryall Mountain ranges in central Colorado, USA. The onset of this epidemic coincided temporally and spatially with the appearance of a single domestic sheep (Ovis aires) on the Sugarloaf Mountain herd's winter range in December 1997. Although only bighorns in the Sugarloaf Mountain herd were affected in 1997-98, cases also occurred during 1998-99 in the other two wintering herds, likely after the epidemic spread via established seasonal movements of male bighorns. In all, we located 86 bighorn carcasses during 1997-2000. Three species of Pasteurella were isolated in various combinations from affected lung tissues from 20 bighorn carcasses where tissues were available and suitable for diagnostic evaluation; with one exception, beta-hemolytic mannheimia (Pasteurella) haemolytica (primarily reported as biogroup 1(G) or 1(alphaG)) was isolated from lung tissues of cases evaluated during winter 1997-98. The epidemic dramatically lowered adult bighorn monthly survival in all three herds; a model that included an acute epidemic effect, differing between sexes and with vaccination status, that diminished linearly over the next 12 mo best represented field data. In addition to the direct mortality associated with epidemics in these three herds, lamb recruitment in years following the pneumonia epidemic also was depressed as compared to years prior to the epidemic. Based on observations presented here, pasteurellosis epidemics in free-ranging bighorn sheep can arise through incursion of domestic sheep onto native ranges, and thus minimizing contact between domestic and bighorn sheep appears to be a logical principle for bighorn sheep conservation.  相似文献   

13.
Abstract: Anecdotal evidence of a pneumonia epizootic among bighorn sheep (Ovis canadensis canadensis) in Rocky Mountain National Park (RMNP), Colorado, USA, during the mid-1990s prompted park officials to examine the current condition of the herds. Here we present a mark—resight study design to estimate population abundance that, in many circumstances, is a reliable and cost-effective alternative to traditional mark—recapture or to indices of population abundance. We captured 59 adult females and radiocollared them via helicopter net-gunning during winter 2002–2003. From ground resighting surveys conducted May—September, we estimated the total RMNP bighorn population at 389.9 (SE = 34.9, CI = 327.2–464.6) in 2003 and 366.4 (SE = 34.7, CI = 304.4–441.0) in 2004. Previous abundance estimates suggest a park-wide decline has occurred between the late 1980s and the suspected pneumonia epidemic of the mid-1990s. Although the 2 years of data from our study are not enough to predict whether the herds are capable of recovering to previous levels, they provide park officials the tools necessary to make the most informed decisions for future monitoring and management of this fragile species.  相似文献   

14.
Presence of antibodies to morbilliviruses, Toxoplasma, and Brucella species in eared seals in North-West of Pacific Ocean was studied. Sera from 189 cubs of eared seals from different rookeries and regions. It has been shown that 10-22% of cubs living on Russian coast have antibodies to such dangerous diseases as morbillivirus infection, brucellosis, and toxoplasmosis. Antibodies to the two pathogens were detected in several animals, and brucellosis was more frequently detected associated infection. These results confirm hypothesis that all 3 pathogens are enzootic in eared seals population.  相似文献   

15.
A recently reestablished and increasing population of Hawaiian monk seals in the main Hawaiian Islands (MHI) is encouraging for this endangered species. However, seals in the MHI may be exposed to a broad range of human, pet, livestock, and feral animal pathogens. Our objective was to determine the movement and foraging habitats of Hawaiian monk seals in the MHI relative to the potential exposure of seals to infectious diseases in near-shore marine habitats. We captured 18 monk seals in the MHI between January 27, 2004 and November 29, 2005, tested them for various infectious diseases, and then monitored the foraging movements of 11 of them using satellite-linked radio transmitters for the next 32–167 days. All seals tested negative for canine adenovirus, calicivirus, four morbilliviruses, phocine herpes virus, Leptospira sp., and feline and canine heartworm antigen/antibody. Six of the seals tested positive on complement fixation for Chlamydophila abortus (formerly Chlamydia psittaci). Four seals demonstrated positive titers to Sarcocystis neurona, two to Neospora caninum, and two to Toxoplasma gondii. Fecal cultures showed approximately half (n = 6) positive for E. coli 0157, no Salmonella sp., and only one with Campylobacter sp. Satellite monitored seals spent considerable time foraging, traveling, and resting in neritic waters close to human population centers, agricultural activity, and livestock ranges, and sources of land-based water runoff and sewage dispersal. Consequently, Hawaiian monk seals in the MHI may be at risk of exposure to several infectious disease agents associated with terrestrial animals that can contaminate marine habitats from runoff along drainages and that are known to cause disease in marine mammals. Further, some seals overlapped substantially in their use of coastal habitats and several moved among islands while foraging and were seen on beaches near each other. This suggests that diseased seals could infect healthy conspecifics throughout the MHI.  相似文献   

16.
Information on health parameters, such as antibody prevalences and serum chemistry that can reveal exposure to pathogens, disease, and abnormal physiologic conditions, is scarce for Antarctic seal species. Serum samples from Antarctic fur seals (Arctocephalus gazella, n=88) from Bouvet?ya (2000-2001 and 2001-2002), and from Weddell seals (Leptonychotes weddellii, n=20), Ross seals (Ommatophoca rossii, n=20), and crabeater seals (Lobodon carcinophagus, n=9) from the pack-ice off Queen Maud Land, Antarctica (2001) were analyzed for enzyme activity, and concentrations of protein, metabolites, minerals, and cortisol. Adult Antarctic fur seal males had elevated levels of total protein (range 64-99 g/l) compared to adult females and pups (range 52-79 g/l). Antarctic fur seals had higher enzyme activities of creatine kinase, lactate dehydrogenase, and amylase, compared to Weddell, Ross, and crabeater seals. Antibodies against Brucella spp. were detected in Weddell seals (37%), Ross seals (5%), and crabeater seals (11%), but not in Antarctic fur seals. Antibodies against phocine herpesvirus 1 were detected in all species examined (Antarctic fur seals, 58%; Weddell seals, 100%; Ross seals, 15%; and crabeater seals, 44%). No antibodies against Trichinella spp., Toxoplasma, or phocine distemper virus (PDV) were detected (Antarctic fur seals were not tested for PDV antibodies). Antarctic seals are challenged by reduced sea ice and increasing temperatures due to climate change, and increased anthropogenic activity can introduce new pathogens to these vulnerable ecosystems and represent a threat for these animals. Our data provide a baseline for future monitoring of health parameters of these Antarctic seal species, for tracking the impact of environmental, climatic, and anthropogenic changes in Antarctica over time.  相似文献   

17.
The ethics of conducting research in epidemic situations have yet to account fully for differences in the proportion and acuteness of epidemics, among other factors. While epidemics most often arise from infectious diseases, not all infectious diseases are of epidemic proportions, and not all epidemics occur acutely. These and other variations constrain the generalization of ethical decision-making and impose ethical demands on the individual researcher in a way not previously highlighted. This paper discusses a number of such constraints and impositions. It applies the ethical principles enunciated by Emmanuel et al. 1 to the controversial Pfizer study in Nigeria in order to highlight the particular ethical concerns of acute epidemic research, and suggest ways of meeting such challenges.
The paper recommends that research during epidemics should be partly evaluated on its own merits in order to determine its ethical appropriateness to the specific situation. Snap decisions to conduct research during acute epidemics should be resisted. Community engagement, public notification and good information management are needed to promote the ethics of conducting research during acute epidemics. Individual consent is most at risk of being compromised, and every effort should be made to ensure that it is maintained and valid. Use of data safety management boards should be routine. Acute epidemics also present opportunities to enhance the social value of research and maximize its benefits to communities.
Ethical research is possible in acute epidemics, if the potential challenges are thought of ahead of time and appropriate precautions taken.  相似文献   

18.
New economically important diseases on crops and forest trees emerge recurrently. An understanding of where new pathogenic lines come from and how they evolve is fundamental for the deployment of accurate surveillance methods. We used kiwifruit bacterial canker as a model to assess the importance of potential reservoirs of new pathogenic lineages. The current kiwifruit canker epidemic is at least the fourth outbreak of the disease on kiwifruit caused by Pseudomonas syringae in the mere 50 years in which this crop has been cultivated worldwide, with each outbreak being caused by different genetic lines of the bacterium. Here, we ask whether strains in natural (non‐agricultural) environments could cause future epidemics of canker on kiwifruit. To answer this question, we evaluated the pathogenicity, endophytic colonization capacity and competitiveness on kiwifruit of P. syringae strains genetically similar to epidemic strains and originally isolated from aquatic and subalpine habitats. All environmental strains possessing an operon involved in the degradation of aromatic compounds via the catechol pathway grew endophytically and caused symptoms in kiwifruit vascular tissue. Environmental and epidemic strains showed a wide host range, revealing their potential as future pathogens of a variety of hosts. Environmental strains co‐existed endophytically with CFBP 7286, an epidemic strain, and shared about 20 virulence genes, but were missing six virulence genes found in all epidemic strains. By identifying the specific gene content in genetic backgrounds similar to known epidemic strains, we developed criteria to assess the epidemic potential and to survey for such strains as a means of forecasting and managing disease emergence.  相似文献   

19.

Background

Many human infectious diseases are caused by pathogens that have multiple strains and show oscillation in infection incidence and alternation of dominant strains which together are referred to as epidemic cycling. Understanding the underlying mechanisms of epidemic cycling is essential for forecasting outbreaks of epidemics and therefore important for public health planning. Current theoretical effort is mainly focused on the factors that are extrinsic to the pathogens themselves (“extrinsic factors”) such as environmental variation and seasonal change in human behaviours and susceptibility. Nevertheless, co-circulation of different strains of a pathogen was usually observed and thus strains interact with one another within concurrent infection and during sequential infection. The existence of these intrinsic factors is common and may be involved in the generation of epidemic cycling of multi-strain pathogens.

Methods and Findings

To explore the mechanisms that are intrinsic to the pathogens themselves (“intrinsic factors”) for epidemic cycling, we consider a multi-strain SIRS model including cross-immunity and infectivity enhancement and use seasonal influenza as an example to parameterize the model. The Kullback-Leibler information distance was calculated to measure the match between the model outputs and the typical features of seasonal flu (an outbreak duration of 11 weeks and an annual attack rate of 15%). Results show that interactions among strains can generate seasonal influenza with these characteristic features, provided that: the infectivity of a single strain within concurrent infection is enhanced 2−7 times that within a single infection; cross-immunity as a result of past infection is 0.5–0.8 and lasts 2–9 years; while other parameters are within their widely accepted ranges (such as a 2–3 day infectious period and the basic reproductive number of 1.8–3.0). Moreover, the observed alternation of the dominant strain among epidemics emerges naturally from the best fit model. Alternative modelling that also includes seasonal forcing in transmissibility shows that both external mechanisms (i.e. seasonal forcing) and the intrinsic mechanisms (i.e., strain interactions) are equally able to generate the observed time-series in seasonal flu.

Conclusions

The intrinsic mechanism of strain interactions alone can generate the observed patterns of seasonal flu epidemics, but according to Kullback-Leibler information distance the importance of extrinsic mechanisms cannot be excluded. The intrinsic mechanism illustrated here to explain seasonal flu may also apply to other infectious diseases caused by polymorphic pathogens.  相似文献   

20.
The length of intervals between epidemic outbreaks of infectious diseases is critical in epidemiology. In several species of marine mammals and birds, it is pivotal to also consider the life history of the species of concern, as the contact rate between individuals can have a seasonal flux, for example, due to aggregations during the breeding season. Recently, particular interest has been given to the role of the dynamics of immunity in determining the intervals between epidemics in wild animal populations. One potentially powerful, but often neglected, process in this context is the maternal transfer of immunity. Here, we explore theoretically how the transfer of maternal antibodies can delay the recurrence of epidemics using Phocine Distemper in harbor seals as an example of a system in which epidemic outbreaks are followed by pathogen extinction. We show that the presence of temporarily protected newborns can significantly increase the predicted interval between epidemics, and this effect is strongly dependent on the degree of synchrony in the breeding season. Furthermore, we found that stochasticity in the onset of epidemics in combination with maternally acquired immunity increases the predicted intervals between epidemics even more. These effects arise because newborns with maternal antibodies temporarily boost population level immunity above the threshold of herd immunity, particularly when breeding is synchronous. Overall, our results show that maternal antibodies can have a profound influence on the dynamics of wildlife epidemics, notably in gregarious species such as many marine mammals and seabirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号