首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multimeric arrays of the yeast retrotransposon Ty.   总被引:8,自引:3,他引:5       下载免费PDF全文
We have identified a novel integrated form of the yeast retrotransposon Ty consisting of multiple elements joined into large arrays. These arrays were first identified among Ty-induced alpha-pheromone-resistant mutants of MATa cells of Saccharomyces cerevisiae which contain Ty insertions at HML alpha that result in the expression of that normally silent cassette. These insertions are multimeric arrays of both the induced genetically marked Ty element and unmarked Ty elements. Structural analysis of the mutations indicated that the arrays include tandem direct repeats of Ty elements separated by only a single long terminal repeat. The Ty-HML junction fragments of one mutant were cloned and shown to contain a 5-base-pair duplication of the target sequence that is characteristic of a Ty transpositional insertion. In addition, the arrays include rearranged Ty elements that do not have normal long terminal repeat junctions. We have also identified multimeric Ty insertions at other chromosomal sites and as insertions that allow expression of a promoterless his3 gene on a plasmid. The results suggest that Ty transposition includes an intermediate that can undergo recombination to produce multimers.  相似文献   

2.
3.
4.
The two-hybrid system was used to define regions of the Ty1 Gag protein responsible for multimerization. Gag truncations lacking the first 146 or the last 97 amino acids (Gag is 440 amino acids in length) interact. A severely C-terminally truncated molecule (lacking the last 207 amino acids) was the smallest truncation to interact, suggesting that some protein-protein interactions between Gag molecules are mediated through the first 233 amino acids. However, an internal deletion of amino acids 147 to 233 does not abolish Gag-Gag interaction, indicating that more than one region can mediate Gag interaction. Surprisingly, we found that a truncation lacking the last 97 amino acids interacts with itself but not with full-length Gag. This is apparently due to an artifact of the two-hybrid assay, since these same molecules coassemble with wild-type Gag into Ty1 virus-like particles.  相似文献   

5.
6.
The virus-like particles (VLPs) produced by the yeast retrotransposon Ty1 are functionally related to retroviral cores. These particles are unusual in that they have variable radif. A paired mass-radius analysis of VLPs by scanning transmission electron microscopy showed that many of these particles form an icosahedral T-number series. Three-dimensional reconstruction to 38-A resolution from cryo-electron micrographs of T = 3 and T = 4 shells revealed that the single structural protein encoded by the TYA gene assembles into spiky shells from trimeric units.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Dai J  Xie W  Brady TL  Gao J  Voytas DF 《Molecular cell》2007,27(2):289-299
The yeast Ty5 retrotransposon preferentially integrates into heterochromatin at the telomeres and silent mating loci. Target specificity is mediated by a small domain of Ty5 integrase (the targeting domain, TD), which interacts with the heterochromatin protein Sir4 and tethers the integration complex to target sites. Here we demonstrate that TD is phosphorylated and that phosphorylation is required for interaction with Sir4. The yeast cell, therefore, through posttranslational modification, controls Ty5's mutagenic potential: when TD is phosphorylated, insertions occur in gene-poor heterochromatin, thereby minimizing deleterious consequences of transposition; however, in the absence of phosphorylation, Ty5 integrates throughout the genome, frequently causing mutations. TD phosphorylation is reduced under stress conditions, specifically starvation for amino acids, nitrogen, or fermentable carbon. This suggests that Ty5 target specificity changes in response to nutrient availability and is consistent with McClintock's hypothesis that mobile elements restructure host genomes as an adaptive response to environmental challenge.  相似文献   

15.
16.
17.
Cleavage of the Gag and Gag-Pol polyprotein precursors is a critical step in proliferation of retroviruses and retroelements. The Ty1 retroelement of Saccharomyces cerevisiae forms virus-like particles (VLPs) made of the Gag protein. Ty1 Gag is not obviously homologous to the Gag proteins of retroviruses. The apparent molecular mass of Gag is reduced from 58 to 54 kDa during particle maturation. Antibodies raised against the C-terminal peptide of Gag react with the 58-kDa polypeptide but not with the 54-kDa one, indicating that Gag is proteolytically processed at the C terminus. A protease cleavage site between positions 401 and 402 of the Gag precursor was defined by carboxy-terminal sequencing of the processed form of Gag. Certain deletion and substitution mutations in the C terminus of the Gag precursor result in particles that are two-thirds the diameter of the wild-type VLPs. While the Ty1 protease is active in these mutants, their transposition rates are decreased 20-fold compared with that of wild-type Ty1. Thus, the Gag C-terminal portion, released in the course of particle maturation, probably plays a significant role in VLP morphogenesis and Ty1 transposition.  相似文献   

18.
Ty1 is a retrotransposon of the yeast Saccharomyces cerevisiae whose transposition at new locations in the host genome is activated by stress conditions, such as exposure to UV light, X-rays, nitrogen starvation. In this communication, we supply evidence that cooling for 2 h at +4 °C followed by freezing for 1 h at −10 °C and 16 h at −20 °C also increased Ty1 transposition. The mobility of Ty1 was induced by cooling at slow rates (3 °C/min) and the accumulation of trehalose inside cells or the cooling at high rates (100 °C/min) inhibited significantly the induction of the transposition. The freeze-induced Ty1 transposition did not occur in mitochondrial mutants (rho) and in cells with disrupted SCO1 gene (Δsco1 cells) evidencing that the Ty1 transposition induced by cooling depends on the mitochondrial oxidative phosphorylation. We also found that the freeze induced Ty1 transposition is associated with increased synthesis and accumulation of superoxide anions (O2) into the cells. Accumulation of O2 and activation of Ty1 transposition were not observed after cooling of cells with compromised mitochondrial functions (rho, Δsco1), or in cells pretreated with O2 scavengers. It is concluded that (i) elevated levels of reactive oxygen species (ROS) have a key role in activation the transposition of Ty1 retrotransposon in yeast cells undergoing freezing and (ii) given the deleterious effect of increased ROS levels on cells, special precautions should be taken to avoid ROS production and accumulation during cryopreservation procedures.  相似文献   

19.
The Ty element of yeast is a member of a class of eukaryotic transposons which bear a striking resemblance to retroviral proviruses in their structure and expression strategies (1,2). A direct comparison can be drawn between the production of a fusion protein encoded by Ty, resulting from a frameshift event which fuses two out-of-phase open reading frames TYA and TYB, and the production of Pr180gag-pol in a retrovirus such as Rous Sarcoma Virus (RSV) (3,4). We present data which shows, definitively, that RNA splicing is not responsible for the frameshift in Ty. By in vitro mutation of a class I element, Ty1-15, we demonstrate that 31 nucleotides contained within the region where the TYA and TYB open reading frames overlap direct the frameshift. Within this short sequence there is a region of homology with a class II element which we show is also able to frameshift.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号