首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Functional significance of neural projections from the hypothalamic dorsomedial nucleus (DMN) to the paraventricular nucleus (PVN) was investigated using surgical lesion of the central part of the DMN. Under basal conditions, DMN lesion resulted in a decrease in magnocellular vasopressin (AVP) mRNA levels in the PVN, rise in pituitary proopiomelancortin (POMC) mRNA concentrations and elevated plasma corticosterone levels. Corticotropin-releasing hormone (CRH) mRNA levels remained unaffected. In sham operated animals, osmotic stress induced by hypertonic saline injection failed to modify AVP mRNA, but increased CRH and POMC mRNA levels and peripheral hormone release. The rise in CRH mRNA levels after osmotic stress was potentiated in DMN lesioned animals. Thus, the DMN participates in the control of hypothalamic peptide gene expression and pituitary adrenocorticotropic function.  相似文献   

4.
5.
Hypoxia is a common cause of neonatal morbidity and mortality. We have previously demonstrated a dramatic ACTH-independent activation of adrenal steroidogenesis in hypoxic neonatal rats, leading to increases in circulating corticosterone levels. The purpose of the present study was to determine if this ACTH-independent increase in corticosterone inhibits the ACTH response to acute stimuli. Neonatal rats were exposed to normoxia (control) or hypoxia from birth to 5 or 7 days of age. At the end of the exposure, plasma ACTH and corticosterone were measured before and after either ether vapors were administered for 3 min or CRH (10 microg/kg) was given intraperitoneally. Thyroid function, pituitary pro-opiomelanocortin (POMC) mRNA and ACTH content, and hypothalamic corticotropin-releasing hormone (CRH), neuropeptide Y (NPY), and AVP mRNA were also assessed. Hypoxia led to a significant increase in corticosterone without a large increase in ACTH, confirming previous studies. The ACTH responses to ether or CRH administration were almost completely inhibited in hypoxic pups. Hypoxia did not affect the established regulators of the neonatal hypothalamic-pituitary-adrenal axis, including pituitary POMC or ACTH content, hypothalamic CRH, NPY, or AVP mRNA (parvo- or magnocellular), or thyroid function. We conclude that hypoxia from birth to 5 or 7 days of age leads to an attenuated ACTH response to acute stimuli, most likely due to glucocorticoid negative feedback. The neural and biochemical mechanism of this effect has yet to be elucidated.  相似文献   

6.
7.
8.
Brain corticotropin-releasing hormone (CRH) concentration and pituitary adreno-cortical responses were examined in chronically stressed rats: body restraint stress (6 h/day) for 4 or 5 weeks. Stressed rats showed a reduction in weight gain. CRH concentration in the median eminence and the rest of the hypothalamus were not different between control and chronically immobilized rats. The anterior pituitary adenocorticotropic hormone (ACTH) concentration was elevated in chronically stressed rats, whereas plasma ACTH and corticosterone levels did not differ from the control values. The median eminence CRH concentration was reduced to the same extent at 5 min after onset of ether exposure (1 min) in chronically immobilized rats and controls. However, plasma ACTH and corticosterone showed greater responses to ether stress in chronically immobilized rats than in control rats. Plasma ACTH and corticosterone responses to exogenous CRH were not different between control and chronically immobilized rats, while the response to arginine vasopressin (AVP) was significantly greater in chronically immobilized rats. These results suggest that chronic stress caused an increase in the ACTH-secreting mechanism and that pituitary hypersensitivity to vasopressin might at least be partly responsible for this.  相似文献   

9.
The plasma arginine vasopressin (AVP), ACTH, and corticosterone levels and the hypothalamic corticotropin-releasing hormone (CRH) content were measured after oral administration of 1 ml of 75% ethanol to rats, a model known to induce acute gastric erosions and stress. Elevated plasma AVP, ACTH, and corticosterone levels were detected 1 h after ethanol administration. Treatment with the vasopressin pressor (V(1)) receptor antagonist [d(CH(2))(5)Tyr(Me)-AVP] before ethanol administration significantly reduced the ACTH and corticosterone level increases. A higher hypothalamic CRH content was measured at 30 or 60 min after ethanol administration. V(1) receptor antagonist injection, 5 min before ethanol administration, inhibited the rise in hypothalamic CRH content. The protein synthesis blocker cycloheximide prevented the hypothalamic CRH content elevation after stress. The AVP-, CRH-, and AVP + CRH-induced in vitro ACTH release in normal anterior pituitary tissue cultures was also prevented by pretreatment with the V(1) receptor antagonist. The results support the hypothesis that stress-induced AVP may not only act directly on the ACTH producing anterior pituitary cells but also indirectly at the hypothalamic level via the synthesis and release of CRH.  相似文献   

10.
Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH), urocortin 2 (UCN2) and proopiomelanocortin (POMC) compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15–30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY) and arginine vasopressin (AVP) mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls.  相似文献   

11.
Regulation of rat hepatic cytosolic glucocorticoid receptors was studied using our newly developed exchange assay. Injecting 1 mg of dexamethasone or corticosterone into 150-250 g adrenalectomized rats caused a rapid decline in glucocorticoid receptor binding. Glucocorticoid receptor levels were depressed 80-90% in less than 15 min after hormone treatment, and remained low for about 24-48 h after glucocorticoid administration. 80-90% of glucocorticoid receptor binding was regenerated by 48 h, and complete binding was recovered by 72 h. Regenerated glucocorticoid receptor binding (48-72 h after first hormone injection) could be re-depressed by a second injection of the hormone. Similar results were obtained using normal (intact) rats. Optimum induction of tyrosine aminotransferase activity was obtained within 2 h following the first hormonal injection. Induction of tyrosine aminotransferase activity (measured 2 h after a second injection of the glucocorticoid) correlated with glucocorticoid receptor levels. Thus, 1 mg of dexamethasone or corticosterone greatly enhanced the liver tyrosine aminotransferase activity in the adrenalectomized rats (not previously hormone treated) and in adrenalectomized rats previously injected (48-72 h) with 1 mg of the glucocorticoid hormone. Enhancement of tyrosine aminotransferase activity was lowest 16-24 h after the first hormone injection (when receptor levels were extremely low). These results indicate that the induction of liver tyrosine aminotransferase activity by glucocorticoid hormones is correlated with cytosolic glucocorticoid receptor levels.  相似文献   

12.
13.
Production of n-octanoyl-modified ghrelin (GHREL), an active form of the peptide requires prohormone processing protease and GHREL O-acyltransferase (GOAT), as well as n-octanoic acid. Recently a selective GOAT antagonist (GO-CoA-Tat) was invented and this tool was used to study the possible role of endogenous GHREL in regulating HPA axis function in the rat. Administration of GOAT inhibitor (GOATi) resulted in a notable decrease in plasma ACTH, aldosterone and corticosterone concentrations at min 60 of experiment. Octanoic acid (OA) administration had no effect on levels of studied hormones. Plasma levels of unacylated and acylated GHREL remained unchanged for 60min after either GOATi or OA administration. Under experimental conditions applied, no significant changes were observed in the levels of GOAT mRNA in hypothalamus, pituitary, adrenal and stomach fundus. After GOATi injection hypothalamic CRH mRNA levels were elevated at 30 min and pituitary POMC mRNA levels at 60 min. Both GOATi and OA lowered basal, but not K(+)-stimulated CRH release by hypothalamic explants and had no effect on basal or CRH-stimulated ACTH release by pituitary slices. Neither GOATi nor OA affected corticosterone secretion by freshly isolated or cultured rat adrenocortical cells. Thus, results of our study suggest that in the rat endogenous GHREL exerts tonic stimulating effect on hypothalamic CRH release. This effect could be demonstrated by administering rats with selected inhibitor of ghrelin O-acyltransferase, the enzyme responsible for GHREL acylation, a process which is absolutely required for both GHSR-1a binding and its central endocrine activities.  相似文献   

14.
Our recent finding that ACTH increases c-fos mRNA in the adrenal gland of hypophysectomized rats indicates that the gene product FOS may play an important role(s) in mediating the action of ACTH. However, hypophysectomy employed in that study causes the disappearance of trophic hormones other than ACTH and may modify the effect of ACTH. Thus, in the present investigation, dexamethasone-treated rats were used. Since FOS functions only when it dimerizes with JUN (the product of c-jun gene), the changes in the levels of c-fos and c-jun mRNAs were studied together with that of beta-actin mRNA which is also affected by ACTH. Northern blot analysis was employed to determine the mRNA levels. It was demonstrated that ACTH increases the mRNAs coding c-fos and c-jun in the adrenal glands of dexamethasone-treated, ACTH-suppressed rats. The c-fos mRNA was not detectable before ACTH administration. After ACTH administration, the mRNA levels were transiently increased, the maximum level being observed at 30 min after ACTH. At 180 min post ACTH, the level returned to the unstimulated level. The mRNA coding c-jun was detectable before ACTH administration and it also increased rapidly after ACTH with maximal stimulation at 30 min. However, the mRNA level at 180 min post ACTH was still higher than the unstimulated level. The changes in beta-actin mRNA were approximately the same as those of c-jun mRNA. These results suggest that increased expression of c-fos, c-jun and beta-actin genes by ACTH may play an important role in mediating its action on the adrenals.  相似文献   

15.
To determine separately the effect of corticotropin-releasing hormone (CRH) on analgesia and on inflammation, rats were assigned to receive CRH 60 microg/kg, CRH 300 microg/kg, morphine 4 mg/kg, or normal saline intravenously 15 min before a burn injury. Two mesh chambers that allowed collection of fluid had been previously implanted subdermally in each rat. The skin overlying the right chamber was subject to thermal injury. The left chamber served as a control. We assessed systemic analgesia, and levels of beta-endorphin and corticosterone in plasma and in chamber fluid before, 1, 4 and 24 h after drug administration. The CRH groups exhibited longer tail flick latencies than the control group (P=0.0001) although the increase in latency was of smaller magnitude than in the morphine group. We did not observe a CRH dose response for analgesia. Plasma corticosterone levels were higher in the CRH 300 microg/kg group than in the normal saline group at 4 h (P=0.03). Levels of beta-endorphin in plasma as well as the levels of corticosterone and beta-endorphin in chambers were similar in the CRH 300 microg/kg group and in the normal saline group (all P values>0.1). Thus, systemically administered CRH produces analgesia in thermal injury independent of its effect on these two markers of local or systemic inflammation.  相似文献   

16.
17.
We investigated the role of nitric oxide (NO) in the interleukin 1beta (IL-1beta) and nicotine induced hypothalamic-pituitary-adrenal axis (HPA) responses, and a possible significance of CRH and vasopressin in these responses under basal and social stress conditions. Male Wistar rats were crowded in cages for 7 days prior to treatment. All compounds were injected i.p., nitric oxide synthase (NOS) inhibitors, alpha-helical CRH antagonist and vasopressin receptor antagonist 15 min before IL-1beta or nicotine. Identical treatment received control non-stressed rats. Plasma ACTH and serum corticosterone levels were measured 1 h after IL-1beta or nicotine injection. L-NAME (2 mg/kg), a general nitric oxide synthase (NOS) inhibitor, considerably reduced the ACTH and corticosterone response to IL-1beta (0.5 microg/rat) the same extent in control and crowded rats. CRH antagonist almost abolished the nicotine-induced hormone responses and vasopressin antagonist reduced ACTH secretion. Constitutive endothelial eNOS and neuronal nNOS inhibitors substantially enhanced the nicotine-elicited ACTH and corticosterone response and inducible iNOS inhibitor, aminoguanidine, did not affect these responses in non-stressed rats. Social stress significantly attenuated the nicotine-induced ACTH and corticosterone response. In crowded rats L-NAME significantly deepened the stress-induced decrease in the nicotine-evoked ACTH and corticosterone response. In stressed rats neuronal NOS antagonist did not alter the nicotine-evoked hormone responses and inducible NOS inhibitor partly reversed the stress-induced decrease in ACTH response to nicotine. These results indicate that NO plays crucial role in the IL-1beta-induced HPA axis stimulation under basal and social stress conditions. CRH and vasopressin of the hypothalamic paraventricular nucleus may be involved in the nicotine induced alterations of HPA axis activity. NO generated by eNOS, but not nNOS, is involved in the stress-induced alterations of HPA axis activity by nicotine.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号