首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urotensin-II-related peptide (URP) is an eight-amino-acid peptide recently isolated from rat brain and considered as the endogenous ligand for the urotensin-II receptor. Immunohistochemical treatment of mouse brain sections with anti-URP antibodies revealed numerous immunopositive fibres in the median eminence and vascular organ of the lamina terminalis as well as labelled cell bodies, mainly in the preoptic area. In consecutive serial sections, in situ hybridization demonstrated URP-mRNA in neuronal perikarya. Double-immunofluorescence labelling showed a co-localization of URP and GnRH in fibres and cell bodies. These results suggest the existence of URP as a novel hypothalamic neuroendocrine peptide co-localized and possible co-released with GnRH.  相似文献   

2.
Adjacent tissue sections through the rat median eminence were examined for the distribution of gonadotropin-releasing hormone (GnRH) and catecholamines (CA). A simultaneous visualization technique was employed for this correlative neuroanatomical analysis. At rostral and mid-central levels of the median eminence the majority of GnRH terminals do not appear in coexistence with CA terminals; the latter were confined to the outer-most 10 μm of the median eminence while the densest concentration of GnRH terminals was located internal to this layer. However, individual GnRH fibers appeared to penetrate the outer CA zone wherein they were found in juxtaposition to portal capillaries. At caudal levels of the median eminence, there was an extensive overlap of CA and GnRH varicosities adjacent to the tubero-infundibular sulcus. In addition, numerous GnRH terminals were seen adjacent to portal vessels. The differences in the positions of CA and GnRH terminals between rostral and caudal median eminence may provide a morphological basis for the hypothesis of separate regulatory mechanisms for CA upon GnRH secretion at these two levels of the median eminence.  相似文献   

3.
The effects of 2 weeks of orchidectomy and replacement therapy with testosterone upon the content and distribution of gonadotropin-releasing hormone (GnRH) in the median eminence were determined by means of radioimmunoassay and electron microscopy. Photographic montages were prepared from electron micrographs of the lateral median eminence at the point of deepest invagination of the tuberoinfundibular sulcus. Morphometric analysis of photographs of tissues immunohistochemically stained for GnRH was performed to determine changes in the volume density of GnRH-containing axon profiles following the experimental treatments. A decrease in GnRH content after orchidectomy was observed both by morphometric analysis of axon volume density and radioimmunoassay of total GnRH content. Testosterone treatment of orchidectomized animals prevented the postorchidectomy loss of GnRH. Morphometric analysis of conventional electron micrographs revealed an increase in the number of axons containing no dense-core vesicles following orchidectomy, but no decrease in volume density of the neuropil. The results indicate that the change in volume density of immunostained axons was related to the loss of immunostainable dense-core vesicles and not to a change in the size or number of axons. The area corresponding to the location of the highest concentration of GnRH-containing axons was observed to be largely avascular and separated from the vessels of the tuberoinfundibular sulcus by a "border zone" composed of glial foot processes. The unique morphology of the GnRH area has suggested the name "compact zone" to distinguish it from the palisade zone with which it is continuous medially. GnRH axons in this region are probably part of a tract extending farther caudally rather than a terminal field.  相似文献   

4.
Summary The arcuate nucleus, median eminence, and the lateral preoptic area from the brains of aldehyde-perfused male and female rats were examined by electron microscopy. In the lateral preoptic area, three neuronal types are described: a small light neuron, a larger light one, and a dark neuron resembling the larger light one in size and nuclear shape. Many myelinated axons are interposed among single neurons or neuronal pairs. The relationship of structures to each other is discussed. Several observations not previously reported are illustrated from tissue of the arcuate nucleus and median eminence.  相似文献   

5.
The course and termination of nerve fibres approaching the median eminence from lateral direction were studied in Golgi specimens and by the axon-degeneration technique. Varicose nerve fibres could be traced from an area corresponding to the medial and superficial portion of the medial forebrain bundle. They run immediately underneath the free ventral surface of the hypothalamus. Parasagittal knife-cuts placed at various distances (0.5 to 1.4 mm) from the midline resulted in a large number of degenerated axon fragments along the margin of the median eminence, on both sides of the tuberoinfundibular sulcus. Scattered degenerated fragments were found in the lateral part of the palisade zone as well as in the pituitary stalk. No degeneration could be seen in the abo9ve mentioned areas if the cut was as far as 1.8 mm from the midline. Degenerated axon fragments appeared as soon as 5 hours following the lesion indicating that the time course of ultrastructural degenerative alterations is remarkably fast in this fibre system.  相似文献   

6.
The peroxidase-antiperoxidase method was used to determine quantitatively the effect of short photoperiod-induced gonadal regression on the immunoreactive gonadotropin-releasing hormone (GnRH) neuronal system of female Peromyscus leucopus. In mice exposed to either long (16L:8D) or short (8L:16D) photoperiod, immunoreactive cell bodies were loosely organized into six groups: olfactory peduncle, diagonal band of Broca, septum, preoptic area (POA), anterior hypothalamus (AH), and basal hypothalamus. The POA and AH contain the largest number of cell bodies, which supply the major GnRH innervation to the median eminence (ME) and several extrahypothalamic brain sites. Exposure to short photoperiod increased the number of immunoreactive cell bodies within the anterior hypothalamus and preoptic area (AHPOA) and also increased the optical density for staining of immunoreactive cell bodies in the AHPOA and olfactory peduncle. The ME of mice exposed to short photoperiod had a higher density of GnRH fibers relative to that of mice exposed to long photoperiod, and the content of GnRH fibers in the rostral ME was correlated with the optical content for immunostaining of cell bodies in the AHPOA. These results are evidence that gonadal regression induced by short photoperiod (mediated by the pineal gland) involves alterations of GnRH neuronal activity. Notably, data from this study are consistent with the hypothesis that suppressed release of GnRH from neurovascular terminals in the ME, rather than lack of availability of the decapeptide, promotes gonadal regression.  相似文献   

7.
Summary The hypothalamo-hypophysial system of the adult chicken has been studied with a monoclonal antibody that cross-reacts with arginine vasotocin and mesotocin. We have used this antibody on thick (100 m) sections in conjunction with a peroxidase-conjugated rabbit antimouse antibody that permits the visualization not only of entire perikarya, but also of long portions of their axons and dendrites. Our results confirm older concepts based on classical methods, but the more sensitive immunocytochemical method reveals that the system is more extensive than previously recognized. Immunostained neurons in the chicken are widely scattered in the hypothalamus. In the rostral preoptic region, there are three immunostained neuronal cell groups: 1) a prominent closely packed group that extends along the ventromedial surface, 2) a diffusely distributed lateral group, and 3) an external group that surrounds the lateral aspect of the septomesencephalic tract. Caudally in the preoptic area and in the anterior hypothalamus, the same groups are present; but there are also conspicuous periventricular perikarya. Many of them have processes that project to the lumen of the third ventricle, as well as parallel axons that arch lateroventrally in the hypothalamus. In the midhypothalamic area, the periventricular perikarya and processes are particularly numerous at the level of the palliai commissure. The dorsal periventricular group located at the level of the dorsomedial anterior nucleus of the thalamus are the most caudal perikarya. They extend laterally in a wing-like formation. The immunostained axons from all of these perikarya form a compact hypothalamo-hypophysial tract as they run from the midhypothalamus to the median eminence and converge beneath the third ventricle. Axons branching from this tract innervate the zone externa of the anterior median eminence; another group of axons running in the fibrous layer of the zona interna proceeds to the neural lobe.  相似文献   

8.
The objectives were to (a) determine the age in development when GnRH is first detectable in the brain and (b) observe the distribution of GnRH throughout the fetal and early postnatal period. GnRH was localized immunohistochemically in fetal (15, 16, 17 and 19 days of gestation) and early postnatal (1- and 7-day-old) mice with the peroxidase-antiperoxidase (PAP) method of Sternberger. In the organum vasculosum of the lamina terminalis (OVLT) and in the median eminence of the fetus, GnRH was first detected at 17 days of gestation. In the OVLT, GnRH was found ventral to the preoptic recess of the third ventricle near the ventral surface of the brain. In addition, GnRH was located adjacent to the superficial portal capillaries near the surface of the median eminence. At 19 days of gestation, the distribution of GnRH was similar to that observed at 17 days and there was a marked increase in amount. In the newborn mouse, GnRH was undetectable in the OVLT and its content in the median eminence was decreased as compared to that observed in the fetus. By the seventh postnatal day, a considerable accumulation of GnRH had occurred in the OVLT and median eminence. In the OVLT, it was associated with capillaries ventral to the preoptic recess, and its distribution in the median eminence was similar to that in the adult mouse. In both the OVLT and median eminence of the fetal and early postnatal mouse GnRH appeared to be stored in axons and axon endings, but was not detectable in nerve cell bodies or ependymal cells. These observations suggest that the potential for neuroendocrine control of gonadotropin secretion exists in the fetal mouse early as 17 days of gestation.  相似文献   

9.
Summary In the median eminence of the newt a medial region and two lateral regions are described.In cross section, the medial region appears to be made up of 1) an outer or glandular zone (Zone I) containing aldehyde-thionine-positive and negative nerve fibres and blood capillaries. Nerve fibres appear aligned in palisade array along the capillaries. 2) An inner zone (Zone II) made up of a) a layer of aldehyde-thionine-positive nerve fibres (fibrous layer) belonging to the preoptic hypophyseal tract and b) a layer of ependymal cells lining the infundibular lumen and reaching the blood vessels with their long processes.The lateral regions display a less pronounced stratification and aldehyde-thionine positive nerve fibres are nearly absent.A slender lamina (ependymal border) containing mainly aldehyde-thionine-positive nerve fibres and ependymal cells connects the median eminence to the pars nervosa.At the ultrastructural level, in the outer zone of the medial region at least 4 types of nerve fibres and nerve endings are identified:Type I nerve fibres containing granular vesicles of 700–1000 Å and clear vesicles (250–400 Å).Type II nerve fibres containing granular vesicles and polymorphous granules of 900–1300 Å and clear vesicles (250–400 Å).Type III nerve fibres containing dense granules of 1200–2000 Å and clear vesicles of 250–400 Å.Type IV nerve fibres containing only clear vesicles of 250–400 Å. In the inner zone too, all these nerve fiber types are found among ependymal cells, while the fibrous layer consists of nerve fibres containing granules of 1200–2000 Å in diameter.In the lateral regions Type I, Type II and Type IV nerve fibres and their respective perivascular terminals are found; axons containing dense granules (1200–2000 Å) are scanty. In these regions typical synapses between Type I nerve fibres and processes rich in microtubules are visible.The classification and functional significance of nerve fibres in the median eminence are still unsolved, but it may be assumed that nerve fibres of the medial region belong to both the preoptic hypophyseal and tubero hypophyseal tract, while the lateral regions are characterized by nerve fibres of the tubero hypophyseal tract. Peculiar specializations of the ependymal cells in the median eminence of the newt are also discussed.Work supported by a grant from the Consiglio Nazionale delle Ricerche.The authors are indebted to Mr. G. Gendusa and P. Balbi for technical assistance.  相似文献   

10.
Summary By means of single and double immuno-enzyme cytochemical staining techniques, it was shown that the external region of the amphibian median eminence contains separate vasotocinergic and mesotocinergic nerve fibres. Moreover, it was demonstrated that the vasotocinergic fibres also contain neurophysin. In animals in which the hypothalamic magnocellular neurosecretory preoptic nuclei had been completely removed, the immuno-reactive vasotocinergic and mesotocinergic fibres of the median eminence had disappeared. From this result, it is concluded that, at least the great majority of the vasotocinergic and mesotocinergic fibres of the external region of the amphibian median eminence are processes of neurosecretory perikarya located in the hypothalamic magnocellular preoptic nuclei. On the other hand, our results do not exclude the possibility that a minority of these neurosecretory fibres originate from small immuno-reactive perikarya which were found in the tuber cinereum. The observation that both kinds of processes accumulate around blood capillaries of the hypophysial portal system strongly suggests that they play a role in the control of the activity of the pars distalis of the hypophysis.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

11.
Somatostatin/catecholamine as well as growth hormone releasing factor/catecholamine interactions have been characterized in the hypothalamus and the preoptic area using morphometrical and quantitative histofluorimetrical analyses.
  • 1.(1) The morphometrical analysis of adjacent coronal sections of the rat median eminence demonstrated a marked overlap of somatostatin and tyrosine hydroxylase immunoreactive nerve terminals as well as of growth hormone releasing factor and tyrosine hydroxylase immunoreactive nerve terminals in the medial and lateral palisade zones of the rostral and central parts. Furthermore, the studies on codistribution of growth hormone releasing factor and tyrosine hydroxylase immunoreactivity indicate that only a limited proportion of the growth hormone releasing factor and the dopamine nerve terminals may costore dopamine and growth hormone releasing factor respectively in the medial and lateral palisade zones (see Meister et al., 1985).
  • 2.(2) Intravenous injections of somatostatin 1–14 (100 μg/kg, 2 h) into the hypophysectomized male rat produced an increase in dopamine utilization in the medial and lateral palisade zones of the median eminence.
  • 3.(3) Intravenous injections of rat hypothalamic growth hormone releasing factor (80 μg/kg, 2 h) in the hypophysectomized male rat did not change dopamine utilization in the median eminence but increased noradrenaline utilization in the ventral zone of the hypothalamus and produced a depletion of noradrenaline stores in the paraventricular hypothalamic nucleus.
  • 4.(4) Intravenous injections of human pancreatic growth hormone releasing factor 1–44 (80 μg/kg, 2 h) in the hypophysectomized male rat did not change dopamine utilization in the median eminence, but reduced noradrenaline utilization in the subependymal layer and increased noradrenaline utilization in the suprachiasmatic preoptic nucleus.
The combined results of the present and previous studies have led us to put forward the medianosome concept. The medianosome is defined as an integrative unit, which consists of well defined aggregates of transmitter identified nerve terminals interacting with one another in the external layer of the median eminence. Our present data indicate the existence of putative medianosomes consisting predominantly of growth hormone releasing factor nerve terminals costoring dopamine as well as of somatostatin and dopamine nerve terminals, which interact locally to control growth hormone secretion. A complementary control of growth hormone secretion may be exerted by noradrenaline mechanisms in the subependymal layer, in the ventral zone and/or in the suprachiasmatic preoptic nucleus. However, further analyses in view of the differential effects seen with the present doses of rat hypothalamic and human pancreatic growth hormone releasing factor have to be done. The results also indicate the possible existence of growth hormone releasing factor receptors in the median eminence which may participate in the feedback control of the growth hormone releasing factor immunoreactive neurons in the ventral zone of the hypothalamus.  相似文献   

12.
Summary In the hypothalamus of the turtle, Lissemys punctata granosa, two magnocellular and 23 parvocellular neuronal complexes can be distinguished. The magnocellular complexes include the nucleus supraopticus and the nucleus paraventricularis; paraventricular neurons are partly arranged in rows parallel to the third ventricle. Most infundibular parvocellular nuclei display neurons disposed in rows parallel to the ventricular surface. In the preoptic region, the prominent parvocellular neuronal complexes encompass the nucleus periventricularis anterior, lateral preoptic area, the nucleus of the anterior commissure and the nucleus suprachiasmaticus. The prominent nucleus periventricularis posterior extends caudad and shows neurons arranged in vertical rows parallel to the third ventricle. Other parvocellular nuclei of the rostral hypothalamus are composed of clustered subunits. The nucleus arcuatus is a fairly large nuclear entity extending from the level marked dorsally by the nucleus paraventricularis to the area occupied by the nucleus of the paraventricular organ. A well-developed ventromedial nucleus is located ventrolateral to the paraventricular organ. The prominent paraventricular organ consists of tightly arranged neurons, some of which possess apical projections into the third ventricle; it is surrounded by the nucleus of the paraventricular organ. Nucleus hypothalamicus medialis et lateralis, nucleus hypothalamicus posterior and the nuclei recessus infundibuli are further nuclear units of the tuberal region. The caudal end of the hypothalamus is marked by the nucleus mamillaris; its neurons are scattered among the fibers of the retroinfundibular commissure. The median eminence is well developed and shows a large medial and two lateral protrusions into the infundibular recess.  相似文献   

13.
Summary The capacity of colour change in intact lizards and in animals with a transected hypophysial stalk was studied during extended periods. It was concluded that, with certain exceptions, the skin colour of the lizards gives information on the circulating levels of MSH, and thereby on the function of the pars intermedia.After transection of the hypophysial stalk, three phases of chromatic behaviour were recognised. During Phase I, which lasted for about 6 days (average), dark skin was retained irrespective of the colour of the background (= high MSH levels), whereas Phase II (19 days) was characterised by the inability of the animals to become brown (= low MSH levels). A gradual recovery toward normal adaptive capacity was seen during Phase III.In the disconnected neuro-intermediate lobe, aldehyde fuchsin (AF)-positive material in the rostral region rapidly clumped and disappeared within a few days. In the caudal portion, the stainability and the varicose arrangement of fibres were retained longer, but disappeared within approximately 14 days after the operation. Proximal to the lesion, the preoptic system exhibited a marked increase in stainability with AF, starting in the median eminence and progressing in a retrograde direction toward the peptidergic nuclei.Revascularisation of the disconnected neuro-intermediate lobe occurred during the first few days. A reinnervation of AF-fibres across the transected area into the neural lobe was observed during Phase III in most animals, but AF-fibres did not reoccupy the entire lobe. In association with an outgrowth of capillaries, the regenerating fibres formed new neural lobules. This regenerative process was accompanied by an increase in blood supply from the primary plexus of the median eminence to the neuro-intermediate lobe.Supported by grants from the Swedish Natural Science Research Council and the Royal Physiographic Society of LundThe authors are indebted to Mrs. Ingrid Hallberg and Mrs. Kirsten Thörneby for valuable technical assistance and skillful attention to the animals and to Miss Inger Norling for photographic aid  相似文献   

14.
Summary Rabbit antiserum to synthetic LHRH was used with the immunofluorescence technique to identify the LHRH-secreting neurons and their axonal pathways in the brain of Xenopus laevis. Three groups of immunoreactive neurons were identified: the first, in the telencephalon, is a paired group of cells scattered near the two telencephalic ventricles; the second group lies near the preoptic recess; the third group occurs in the ventral wall of the infundibulum. Two principal neuronal pathways were observed: Fibres originating from the dorsally located telencephalic neurons converge on the cephalic median plane where they form a single bundle behind the telencephalic furrow. This bundle descends towards the anterior border of the preoptic recess where it divides into two nerve bundles which pass on either side of the preoptic recess, run above the optic chiasma then cross the infundibular floor and finally terminate in the median eminence. The second pathway is more direct. The more ventrally located telencephalic LHRH cells give rise to this second pathway. Their axons converge with the other LHRH fibres near the lateral border of the preoptic recess. Most of the LHRH nerve fibres terminate in the median eminence although some terminate near the paired pars tuberalis. No reaction was observed after the use of antiserum absorbed with synthetic antigen.Equipe de Recherche associée C.N.R.S. n 492. This work was financed by the D.G.R.S.T., Contract n 7470046  相似文献   

15.
The distribution of growth hormone releasing factor (GHRF) immunoreactive structures in the rat hypothalmus was studied after colchicine treatment with PAP immunocytochemistry in vibratome sections using an antiserum directed to rat hypothalamic GHRF. The majority of the GHRF-immunoreactive cell bodies were found in the arcuate nucleus, the medial perifornical region, and the ventral premammillary nuclei of the hypothalamus. Scattered cells were seen in the lateral basal hypothalamus, the medial and lateral portions of the ventromedial nucleus, and the dorsomedial and paraventricular nuclei. Immunoreactive fibers were observed in all the regions mentioned above. GHRF terminals were located in the central region of the median eminence. In addition, GHRF-immunoreactive neuronal processes were seen in the ventral region of the dorsomedial nucleus, the medial preoptic and suprachiasmatic regions, dorsal portion of the suprachiasmatic nucleus, bed nucleus of the stria terminals and the hypothalamic portion of the stria terminals. The localization of GHRF-immunoreactive terminals in the median eminence reinforces the view that GHRF plays a physiological role in the regulation of pituitary function. In addition, the localization of GHRF-immunoreactive structures in areas not usually considered to project to the median eminence suggest that GHRF may act as a neuromodulator or neurotransmitter.  相似文献   

16.
The number, morphology, and distribution of gonadotropin-releasing hormone cell bodies were studied in the brain of the male Djungarian hamster during sexual maturation. Males were reared in long days (16L:8D) and were killed at 15, 25, or 40 days of age, before (n = 5), during (n = 4), or after puberty (n = 4), respectively. Brain sections (60 microns) from the rostral olfactory tubercle to the medial basal hypothalamus were processed for GnRH immunocytochemistry. Unipolar and bipolar neurons were immunolabeled for GnRH; both subtypes had smooth cell contours. Analysis of every section from the olfactory tubercle to the arcuate nucleus indicated that at all ages more than 75% of all GnRH-immunoreactive cell bodies were distributed in the diagonal band of Broca, medial preoptic area, lateral preoptic area, and lateral hypothalamic area. GnRH-positive somata were also found in other brain regions, but in each of these areas they represented less than 6% of the total GnRH neuron number. In peripubertal 25-day-old males, during the rapid phase of testes growth, the number of unipolar, but not bipolar, GnRH-labeled cells nearly doubled in the diagonal band of Broca compared to soma numbers in this location in prepubertal 15-day-old males. The same number of unipolar GnRH-stained somata were found in this region in 40-day-old as in 25-day-old hamsters. In the medial preoptic area, a similar doubling of unipolar neuron numbers was observed at 25 days, but by 40 days the number of unipolar immunostained GnRH cells was secondarily reduced to a level comparable to that at 15 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Dees WL  Hiney JK  Sower SA  Yu WH  McCann SM 《Peptides》1999,20(12):1503-1511
A highly specific antiserum against lamprey gonadotropin-releasing hormone (GnRH) was used to localize 1-GnRH in areas of the rat brain associated with reproductive function. Immunoreactive 1-GnRH-like neurons were observed in the ventromedial preoptic area (POA), the region of the diagonal band of Broca and the organum vasculosum lamina terminalis, with fiber projections to the rostral wall of the third ventricle and the organum vasculosum lamina terminalis. Another population of 1-GnRH-like neurons was localized in the dorsomedial and lateral POA, with nerve fibers projecting caudally and ventrally to terminate in the external layer of the median eminence. Other fibers apparently projected caudally and circumventrically to terminate around the cerebral aqueduct in the mid-brain central gray. By using a highly specific antiserum directed against mammalian luteinizing hormone-releasing hormone (m-LHRH), the localization of the LHRH neuronal system was compared to that of the 1-GnRH system. There were no LHRH neurons in the dorsomedial or the lateral region of the POA that contained the 1-GnRH neurons. As expected, there was a large population of LHRH neurons in the ventromedial POA associated with the diagonal band of Broca and organum vasculosum lamina terminalis. In both of these regions, there were many more LHRH neurons than 1-GnRH neurons and the LHRH neurons extended more dorsally and laterally than the 1-GnRH neurons. The LHRH neurons seemed to project to the median eminence in the same areas as those that were innervated by the 1-GnRH neurons. Absorption studies indicated that 1-GnRH cell bodies were eliminated by adding 1 microg of either 1-GnRH-I or 1-GnRH-III, but not m-LHRH to the antiserum before use. Fibers were largely eliminated by the addition of 1 microg 1-GnRH-III to the antiserum. No chicken GnRH-II neurons or nerve fibers could be visualized by immunostaining. Because the antiserum recognized GnRH-I and GnRH-III equally, we have visualized an 1-GnRH system in rat brain. The results are consistent with the presence of either one or both of these peptides within the rat hypothalamus. Because 1-GnRH-I has only weak nonselective gonadotropin-releasing activity, whereas 1-GnRH-III is a highly selective releaser of follicle-stimulating hormone, and because 1-GnRH neurons are located in areas known to control follicle-stimulating hormone release selectively, our results support the hypothesis that 1-GnRH-III, or a closely related peptide, may be mammalian follicle-stimulating hormone-releasing factor.  相似文献   

18.
By radioimmunoassay and immunocytochemical techniques, 14 neuropeptides have been measured and localized in the rat median eminence. Neuropeptides with inhibitory or stimulatory effects on the anterior pituitary hormones as well as posterior pituitary hormones are present in the median eminence in the highest concentrations of the central nervous system. All these peptides (LH-RH, TRH, somatostatin, CRF, vasopressin, oxytocin) are of preoptic or hypothalamic origin and they are transported to the median eminence by loop-like fiber systems through the lateral retrochiasmatic area. Within the median eminence, the pericapillary space constitutes the main common pathway. Three major transport routes—axons, vessels, liquor spaces—are separated from each others by only basement membranes, which allow free communications downwards to the pituitary but also backwards to the central nervous system.  相似文献   

19.
Summary The distribution of natriuretic peptide immunoreactivity was determined in the heart and brain of the gulf toadfish Opsanus beta using the avidin-biotin peroxidase technique. Four antisera were used: the first raised against porcine brain natriuretic peptide which cross-reacts with atrial natriuretic and C-type natriuretic peptides (termed natriuretic peptide-like immunoreactivity); the second raised against porcine brain natriuretic peptide which cross-reacts with C-type natriuretic peptide but not with atrial natriuretic peptide (termed porcine brain natriuretic peptide-like immunoreactivity); the third raised against rat atrial natriuretic peptide; and the fourth raised against eel atrial natriuretic peptide. Natriuretic peptide- and porcine brain natriuretic peptide-like immunoreactivity was observed in all cardiac muscle cells of the atrium. In the ventricle, natriuretic peptide-like immunoreactivity was found in all cardiac muscle cells, however porcine brain natriuretic peptidelike immunoreactivity was confined to muscle cells adjacent to the epicardium. There was no discernible difference in the distribution of natriuretic peptide-like immunoreactivity and porcine brain natriuretic peptide-like immunoreactivity in the brain. Immunoreactive perikarya were observed only in the preoptic region of the diencephalon, and many immunoreactive fibres were found in the telencephalon, preoptic area, and rostral hypothalamus, lateral to the thalamic region. There was no immunoreactivity in any region of the hypophysis. A pair of distinct immunoreactive fibre tracts ran caudally from the preoptic area to the thalamic region, from which fibres extended to the posterior commissure, area praetectalis, dorsolateral regions of the midbrain tegmentum, and tectum. Many immunoreactive fibres were present in the rostral regions of the inferior lobes of the hypothalamus and in the dorsolateral and ventrolateral aspects of the rhombencephalon. No immunoreactivity was observed in the heart and brain using rat atrial natriuretic and eel natriuretic peptide antisera. Although the chemical structure of natriuretic peptides in the heart and brain of toadfish is unknown, these observations show that a component of the natriuretic peptide complement is similar to porcine brain natriuretic and/or porcine C-type natriuretic peptides. The presence of natriuretic peptides in the brain suggests that they could be important neuromodulators and/or neurotransmitters.  相似文献   

20.
Summary Antibodies raised in rabbits against a synthetic preparation of thyrotropin-releasing factor (TRF) were used in association with the immunoperoxidase histochemical technique to localize TRF in the rat median eminence. Using coronal sections cut through the mid-arcuate region, specific immunoreactive material was observed in the medial and lateral regions of the superficial layer of the external median eminence.This work was financed by a grant from the Medical Research Council of New Zealand  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号