共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The vascular endothelium can be regarded as a widely distributed organ, interposed between the intravascular and extravascular spaces, with a pluripotent function in the regulation of capillary diameter, vascular homeostasis, lipoprotein metabolism and the vascular response to injury. In the basal physiological state these processes provide a non-thrombotic, non-inflammatory vascular lining preventing uncontrolled inflammation and coagulation. Endothelial cells respond to potential harmful conditions (mechanical stress, anoxia, ischemia and oxidative stress) and a variety of hormones and vasoactive mediators by inducing coagulation and production of inflammatory mediators through the production of bioactive lipids. Although the number of studies in isolated myocardial endothelial cells is limited, from the presumed metabolic analogy with endothelial cells isolated (and cultured) from other organs, one may conclude that the bioactive lipids include oxygenated arachidonate metabolites (eicosanoids) and the platelet activating factor (1--O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; PAF). All aspects of lipid metabolism, related to the production of eicosanoids and PAF, are present within myocardial endothelial cells. There is uptake and incorporation of fatty acids by endothelial cells and liberation from endogenous triacylglycerol and (membrane) phospholipid stores by (phospho)lipases. Endothelial cells oxidize fatty acids in a carnitine-dependent, mitochondrial, pathway. Endothelial cells actively interact with high density lipoprotein (HDL) and low density lipoprotein (LDL) leading to uptake of cholesterol(esters) that undergo intracellular hydrolysis, and re-esterification to phosphoand neutral lipids, and leaving the LDL-particle modified in a way that makes them bind to the scavenger receptor on macrophages. Extravascular triacylglycerols in lipoproteins (very low density lipoprotein (VLDL), chylomicrons) are handled by endothelial cell lipoprotein lipase, providing substrate fatty acids for the underlying muscle tissue. Eicosanoid production from (membrane)phospholipids and PAF synthesis from alkylphospholipids are tightly coupled and interrelated to the flow of arachidonic acid between cellular lipid pools. (Mol Cell Biochem116: 171–179, 1992) 相似文献
3.
Effect of cobalt ions on myocardial metabolism 总被引:1,自引:0,他引:1
4.
Studies showing a correlation of excess myocardial triacylglycerol stores with apoptosis, fibrosis, and contractile dysfunction indicate that dysregulation of triacylglycerol metabolism may contribute to cardiac disease. This review covers the regulation of heart triacylglycerol accumulation at the critical control points of fatty acid uptake, enzymes of triacylglycerol synthesis, lipolysis, and lipoprotein secretion. These pathways are discussed in the context of the central role myocardial triacylglycerol plays in cardiac energy metabolism and heart disease. 相似文献
5.
《Autophagy》2013,9(6):992-994
Autophagy represents an evolutionarily conserved catabolic mechanism that promotes cell survival by releasing energy substrates via degradation of cellular constituents and by eliminating defective organelles under conditions of stress, such as starvation and hypoxia. The link between enhanced autophagy and nutrient deprivation has been well established. For example, chronic myocardial ischemia, a condition of insufficient oxygen and nutrition, activates autophagy to degrade and recycle damaged cellular structures, thereby ameliorating cardiomyocyte injury. 相似文献
6.
M I Popovich V V Severin V G Sharov 《Biulleten' eksperimental'no? biologii i meditsiny》1986,102(12):671-674
Alterations in the heart energy metabolism, early defects in cardiomyocyte sarcolemma and heart resistance to ischemic damage have been investigated in experimental autoimmune cardiomyopathy. Systolic and diastolic pressures were registered and the speed of ischemic contracture development was determined on the isolated perfused rat hearts. Oxidative phosphorylation parameters, macroenergetic phosphate levels were determined. The ultrastructure and cell membrane permeability to lanthanum were studied. The results obtained have shown that the hearts of rats with autoimmune cardiomyopathy revealed decreased macroenergetic phosphate levels: ATP level was 22% lower and Pcr was 45% lower. Resistance of cardiomyopathic hearts to ischemic stress significantly reduced, cell membrane permeability was distorted. The above changes are believed to be due to incompetent myocardial hypertrophy and Ca overload. 相似文献
7.
Autophagy represents an evolutionarily conserved catabolic mechanism that promotes cell survival by releasing energy substrates via degradation of cellular constituents and by eliminating defective organelles under conditions of stress, such as starvation and hypoxia. The link between enhanced autophagy and nutrient deprivation has been well established. For example, chronic myocardial ischemia, a condition of insufficient oxygen and nutrition, activates autophagy to degrade and recycle damaged cellular structures, thereby ameliorating cardiomyocyte injury. 相似文献
8.
NMR measurements of in vivo myocardial glycogen metabolism 总被引:6,自引:0,他引:6
M R Laughlin W A Petit J M Dizon R G Shulman E J Barrett 《The Journal of biological chemistry》1988,263(5):2285-2291
Using 13C and 1H NMR we measured the rate of glycogen synthesis (0.23 +/- 0.10 mumol/min gram wet weight tissue (gww) in rat heart in vivo during an intravenous infusion of D-[1-13C]glucose and insulin. Glycogen was observed within 10 min of starting and increased linearly throughout a 50-min infusion. This compared closely with the average activity of glycogen synthase I (0.22 +/- 0.03 mumol/min gww) measured at physiologic concentrations of UDP-glucose (92 microM) and glucose-6-phosphate (110 microM). When unlabeled glycogen replaced D-[1-13C]glucose in the infusate after 50 min the D-[1-13C]glycogen signal remained stable for another 60 min, indicating that no turnover of the newly synthesized glycogen had occurred. Despite this phosphorylase a activity in heart extracts from rats given a 1 h glucose and insulin infusion (3.8 +/- 2.4 mumol/min gww) greatly exceeded the total synthase activity and if active in vivo should promote glycogenolysis. We conclude that during glucose and insulin infusion in the rat: (a) the absolute rate of myocardial glycogen synthesis can be measured in vivo by NMR; (b) glycogen synthase I can account for the observed rates of heart glycogen synthesis; (c) there is no futile cycling of glucose in and out of heart glycogen; and (d) the activity of phosphorylase a measured in tissue extracts is not reflected in vivo. These studies raise the question whether significant regulation of phosphorylase a activity in vivo is mediated by factors in addition to its phosphorylation state. 相似文献
9.
10.
Schwanke U Deussen A Heusch G Schipke JD 《American journal of physiology. Heart and circulatory physiology》2000,279(3):H1029-H1035
In mammalian hearts, local myocardial flow (LMF) varies between 20 and 200% of the mean. It is not clear whether oxidative metabolism has a similar degree of heterogeneity. Therefore, we investigated the relation between LMF and local oxidative metabolism in isolated rabbit hearts. Buffer oxygenation with (18)O(2) resulted in labeled myocardial oxidation water (H(2)(18)O). In four hearts, myocardial oxygen consumption (MVO(2)) was calculated from the H(2)(18)O production and compared with that calculated according to Fick. In eight additional hearts, LMF was measured using microspheres. Coronary venous H(2)(18)O kinetics and local H(2)(18)O residues were determined and analyzed by mathematical modeling. MVO(2) recovery from H(2)(18)O was >93% compared with that according to Fick. LMF ranged from 1.91 to 11.24 ml. min(-1). g(-1), and local H(2)(18)O residue ranged from 0.41 to 1.04 micromol/g. Both variables correlated (r = 0.62, n = 64, P < 0.001). Measurements in nine hearts were fitted by modeling using capillary permeability-surface area products (PS(c)) from 2 to 10 ml. min(-1). g(-1). With flow-proportional PS(c), a 3.33-fold difference in LMF was associated with a 6.45-fold difference in local MVO(2). Both LMF and local oxidative metabolism are spatially heterogeneous, and they correlate to one another. 相似文献
11.
R D Tanz 《Federation proceedings》1983,42(8):2452-2453
12.
Hendrickson Steven C. St. Louis James D. Lowe James E. Abdel-aleem Salah 《Molecular and cellular biochemistry》1997,166(1-2):85-94
Long chain free fatty acids (FFA) are the preferred metabolic substrates of myocardium under aerobic conditions. However, under ischemic conditions long chain FFA have been shown to be harmful both clinically and experimentally. Serum levels of free fatty acids frequently are elevated in patients with myocardial ischemia. The proposed mechanisms of the detrimental effects of free fatty acids include: (1) accumulation of toxic intermediates of fatty acid metabolism, such as long chain acyl-CoA thioesters and long chain acylcarnitines, (2) inhibition of glucose utilization, particularly glycolysis, during ischemia and/or reperfusion, and (3) uncoupling of oxidative metabolism from electron transfer. The relative importance of these mechanisms remains controversial. The primary site of FFA-induced injury appears to be the sarcolemmal and intracellular membranes and their associated enzymes. Inhibitors of free fatty acid metabolism have been shown experimentally to decrease the size of myocardial infarction and lessen postischemic cardiac dysfunction in animal models of regional and global ischemia. The mechanism by which FFA inhibitors improve cardiac function in the postischemic heart is controversial. Whether the effects are dependent on decreased levels of long chain intermediates and/or enhancement of glucose utilization is under investigation. Manipulation of myocardial fatty acid metabolism may prove beneficial in the treatment of myocardial ischemia, particularly during situations of controlled ischemia and reperfusion, such as percutaneous transluminal coronary angioplasty and coronary artery bypass grafting. (Mol Cell Biochem 166: 85-94, 1997) 相似文献
13.
High levels of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), are correlated with an increase in extracellular matrix remodelling (ECM) via the matrix metalloproteinases (MMPs) and plasminogen/plasmin system. This results in an increase deposition of collagen that leads to endothelial-myocyte (EM) and myocyte-myocyte (MM) uncoupling; the physiological consequences are a plethora of cardiovascular pathologies. Homocysteine-induced increase in intracellular and mitochondrial Ca(2+) plays an important role in increasing reactive oxygen species (ROS) within mitochondria and instigating mitophagy within the cell. This occurs via several Hcy-mitigated processes: agonizing N-methyl-d-aspartate receptor-1 (NMDA-R1), decreasing expression of peroxisome proliferator activator receptor (PPAR) [thereby increasing oxidation], impairing Ca(2+) handling via Na(+)/Ca(2+) exchanger (NCX1) and Sarco endoplasmic reticulum Ca(2+) ATPase (SERCA-2a). The end result is an increase in ROS that directly or indirectly lead to MMP activation within mitochondria or the cytoplasm. Hcy induces a mitochondrial permeability transition that allows MMPs to be released from mitochondria thereby metabolizing matrix and impairing cardiac function. Further work remains to be elucidated concerning the specific mitochondrial mitophagic mechanisms under which matrix metabolism and remodelling occurs. Moreover, the therapeutic implications of NMDA and PPAR ligands are some promise to patient. 相似文献
14.
Insulin-mediated modifications of myocardial lipoprotein lipase and lipoprotein metabolism 总被引:1,自引:0,他引:1
Recirculating organ perfusion in vitro was conducted with hearts from control rats, animals given a single dose of streptozotocin (65 mg/kg) 48 h earlier, and streptozotocin-treated rats administered insulin (5 units), 2 h prior to organ perfusion. During 45-min perfusions, the lipolysis of very low density lipoprotein (VLDL) triglyceride was significantly less in hearts from diabetics than in controls (41.9 +/- 7.3% of control). This was associated with significant reductions in heparin-releasable (functional) lipoprotein lipase and tissue lipoprotein lipase of perfused hearts. The decreases in VLDL triglyceride metabolism and the levels of myocardial lipoprotein lipase were completely reversed by treatment of diabetic rats with insulin 2 h prior to study. Similar improvement of VLDL triglyceride metabolism and increases in myocardial lipoprotein lipase activity were observed in hearts from diabetic rats by direct addition of 100 milliunits/ml of insulin to the recirculating perfusion media. Under these conditions, the increase in both fractions of lipoprotein lipase in response to insulin was completely inhibited, and utilization of VLDL triglyceride was partially inhibited by pre-perfusion with cycloheximide for 10 min. The data derived from either VLDL triglyceride lipolysis in organ perfusion or direct measurement of myocardial lipoprotein lipase demonstrate a direct effect of insulin on myocardial lipoprotein lipase activity, and suggest that the response to insulin may be due in part to effects on protein synthesis. 相似文献
15.
16.
17.
Dumoulin MJ Adam A Rouleau JL Gosselin H Lamontagne D 《Canadian journal of physiology and pharmacology》2003,81(7):740-746
The aim of the present study was to assess the contribution of angiotensin I converting enzyme (ACE)and neutral endopeptidase (NEP) in the coronary degradation of bradykinin (BK) after left-ventricular hypertrophy following myocardial infarction (MI) in rats. Myocardial infarction was induced by left descendant coronary artery ligation, and the contribution of ACE and NEP in the degradation of exogenous BK after a single passage through the coronary bed was assessed at 2, 5, and 36 days post-MI. BK degradation rate (V(max)/Km) was found to be significantly lower in hearts at 36 days (3.30 +/- 0.28 min(-1)) compared with 2 days (4.39 +/- 0.32 min(-1)) for noninfarcted hearts, but this reduction was just above the statistical level of significance for post-MI hearts. In infarcted hearts, V(max)/Km was increased significantly 5 days post-MI (4.91 +/- 0.28 min(-1)) compared with the 2 and 36 day-groups (3.43 +/- 0.20 and 2.78 +/- 0.16 min(-1), respectively). The difference between noninfarcted and MI was significant only 2 days post-MI. Treatment with the vasopeptidase inhibitor, omapatrilat, showed that the relative contribution of ACE and NEP combined increased over time in infarcted hearts and became significantly higher 36 versus 2 days post-MI. Finally, the treatment with an ACE inhibitor (enalaprilat) and a NEP inhibitor (retrothiorphan) in the 36-day infarcted and noninfarcted hearts showed that the relative contribution of ACE in infarcted hearts was comparable with that of noninfarcted hearts, whereas the relative contribution of NEP was increased significantly in infarcted hearts. In conclusion, experimental MI in rats induces complex changes in the metabolism of exogenous BK. The changes resulted in an increased relative contribution of NEP 36 days after infarction. 相似文献
18.
Zhang J Gong G Ye Y Guo T Mansoor A Hu Q Ochiai K Liu J Wang X Cheng Y Iverson N Lee J From AH Ugurbil K Bache RJ 《American journal of physiology. Heart and circulatory physiology》2005,288(1):H310-H316
NO and O(2) compete at cytochrome-c oxidase, thus potentially allowing NO to modulate mitochondrial respiration. We previously observed a decrease of myocardial phosphocreatine (PCr)/ATP during very high cardiac work states, corresponding to an increase in cytosolic free ADP. This study tested the hypothesis that NO inhibition of respiration contributes to this increase of ADP. Infusion of dobutamine + dopamine (DbDp, each 20 microg.kg(-1).min(-1) iv) to more than double myocardial oxygen consumption (MVo(2)) in open-chest dogs caused a decrease of myocardial PCr/ATP measured with (31)P NMR from 2.04 +/- 0.09 to 1.85 +/- 0.08 (P < 0.05). Inhibition of NO synthesis with N(omega)-nitro-L-arginine (L-NNA), while catecholamine infusion continued, caused PCr/ATP to increase to the control value. In a second group of animals, L-NNA administered before catecholamine stimulation (reverse intervention of the first group) increased PCr/ATP during basal conditions. In these animals L-NNA did not prevent a decrease of PCr/ATP at the high cardiac work state but, relative to MVo(2), PCr/ATP was significantly higher after L-NNA. In a third group of animals, pharmacological coronary vasodilation with carbochromen was used to prevent changes in coronary flow that might alter endothelial NO production. In these animals L-NNA again restored depressed myocardial PCr/ATP during catecholamine infusion. The finding that inhibition of NO production increased PCr/ATP suggests that during very high work states NO inhibition of mitochondrial respiration requires ADP to increase to drive oxidative phosphorylation. 相似文献
19.
Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin 总被引:5,自引:0,他引:5
Doxorubicin and other anthracyclines are among the most potent chemotherapeutic drugs for the treatment of acute leukaemia, lymphomas and different types of solid tumours such as breast, liver and lung cancers. Their clinical use is, however, limited by the risk of severe cardiotoxicity, which can lead to irreversible congestive heart failure. There is increasing evidence that essential components of myocardial energy metabolism are among the highly sensitive and early targets of doxorubicin-induced damage. Here we review doxorubicin-induced detrimental changes in cardiac energetics, with an emphasis on the emerging importance of defects in energy-transferring and -signalling systems, like creatine kinase and AMP-activated protein kinase. 相似文献
20.
Glucose, free fatty acids and lipid fatty acid spectrum were studied in arterial and right atrial blood and myocardium of 122 rats during induction and prolongation of artificial hypobiosis (3 and 24 hours) at body temperature of 30 and 20 degrees C. Prolongation of hypobiosis was shown to be accompanied by enhanced participation of free fatty acids in the myocardial energy metabolism. Lipid fatty acid spectrum in the myocardium was characterized by the decrease in linoleic and palmitooleic acid content and the increase in oleic, palmitic, stearic and arachidonic acid levels. 相似文献