首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation and vertical distribution of sapwood and heartwood were studied with a 45-year-old Cryptomeria japonica D. Don. The tree was grown at a plantation with 1.5 m × 3.0 m spacing near Miao-Li, Taiwan and was felled on 27 February 1992. The thickness of sapwood and heartwood was expressed by a ring count and a linear measurement. The east-west (E-W) wood strips were collected from 0.3 m above ground upwards to the top of the tree at 2.5 m intervals. The sapwood thicknesses from the base to the 10.3 m tree level height are around 20–22 growth rings and 42±2 mm. At the top of the tree, the sapwood thickness is narrower. The heartwood, which decreases in thickness with increasing tree level heights is not found at the top of the tree. The heartwood appears as a conical shape in the tree trunk. There is no statistical difference in sapwood/heartwood thickness between E-W aspects. Tree level heights and the tree level age were found to be important parameters in determining the thickness of sapwood/heartwood.  相似文献   

2.
Heartwood and sapwood development was studied in 18-year-old Eucalyptus globulus trees from pulpwood plantations with different spacings (3 × 2, 3 × 3, 4 × 3, 4 × 4 and 4 × 5 m), on cross-sectional discs taken at breast height. The trees possessed a large proportion of heartwood, on average 60% of the wood cross-sectional surface. Spacing was a statistically significant source of variation of heartwood area, which ranged between 99 and 206 cm2 for the closer (3 × 2) and wider (4 × 5) spacings, respectively. There was a positive and high statistical significant correlation between heartwood diameter and tree diameter (heartwood diameter = −0.272 + 0.616 dbh; r 2 = 0.77; P < 0.001), and larger trees contained more heartwood regardless of spacing. Heartwood proportion in cross-section remained practically constant between spacings but increased with tree diameter class: 55.1, 62.2, 65.0 and 69.5% for diameter at breast height classes <15, 15–20, 20–25 and >25 cm, respectively. The sapwood width did not depend on tree diameter growth and remained practically constant at an average of 18 mm (range 15–21 mm), but sapwood area showed a good linear regression with tree diameter. Therefore, tree growth enhancement factors, such as wide spacings, will induce formation of larger heartwoods that can negatively impact raw-material quality for pulping. The increase in heartwood in relation with tree dimensions should therefore be taken into account when designing forest management guidelines.  相似文献   

3.
Teak (Tectona grandis) is one of the most valuable timbers in international trade and an important species for tropical forestry. Teak is found on the island of East Timor but no information is available on teak growth from this region. A pure stand planted in 1940-50 in the North of East Timor and left unmanaged was studied. Fifteen trees were sampled in October-November 2003 and stem discs taken at three height levels of its height (1.7m, 9.5m and 18.7m), and cores were collected at DBH. Transverse surfaces of the discs and cores were polished for ring identification. Core cross sections were first digitized and disc cross sections were observed under the microscope. Three randomly selected radii were analyzed in each disc. Ring width measurement and ring counting were done using image analysis software. The distinction between heartwood and sapwood was performed macroscopically by colour difference, and heartwood radius and sapwood width were measured. The relationship between stem and heartwood radius was studied for each disc and heartwood percentage by radius was determined. Radial ring width curves are presented for the different axial positions within the stem, and ring width variability was analyzed. Growth rates were calculated and age-radius relationships were estimated using cumulative growth curves. Growth rings were large and well defined in the juvenile phase, reflecting the specie's fast-growing character. The year-to-year variation of ring width showed a similar pattern among trees. Mean ring width ranged between 4.3-7.3mm for the first 20 years and 3.3-5.1mm for 30 to 45 years. Pith eccentricity was evident in the lower part of the stem and ring wedging occurred. On average, heartwood represented 84% of the radius and sapwood contained 6 to 11 rings. The age-related variation of ring width and the occurrence in the lower part of the tree stems of eccentricity and wedging rings, highlights the importance of appropriate stand management, particularly regarding basal density distribution over time, whenever optimized timber production is envisaged.  相似文献   

4.
Heartwood development and other functional changes in stem conductance in response to water stress in radiata pine were investigated using two contrasting climatic areas (high-altitude sub-alpine vs. warm–dry inland) of the Hume region of New South Wales, Australia. The study included mature (34.5–36.5 years old) and young stands (10–11 years old) measured under normal climate and during an extreme drought. The effect of water stress on heartwood development was examined using sapwood percentage, sapwood saturation, development of dry sapwood and evidence of cavitation in sapwood. Trees at the warm–dry site developed heartwood at faster rates than on the high-altitude site. At breast height, the mature stands of the warm–dry site had 8–14 % less sapwood. Extensive cavitation towards the sapwood/heartwood boundary occurred in some of the mature and young stands on the warm–dry site. We postulated that in water-limiting environments, cavitation of the inner sapwood precedes heartwood formation and is an adaptation mechanism that regulates stem conductance capacity and thus water use in the tree. The drought of 2006 led to decreases in moisture associated with cavitation not previously reported for radiata pine and demonstrated the drought hardiness of the species. In the warm–dry site, breast-height sapwood saturation dropped to 58 and 82 % for suppressed and average-sized trees in a mature unthinned stand; and 75–78 % for two young stands. These saturation levels, however, only imply average values as some cells cavitated whilst others were fully saturated. Cavitation occurred in a localized fashion affecting small to large groups of cells.  相似文献   

5.
Dendrochronology is a well-established dating method for wooden objects, but due to surface processing of construction timber or natural degradation the dating of historical wood often relies on a prediction of the number of missing rings based on sapwood statistics. Since Scots pine (Pinus sylvestris L.) is one of the most common tree species in north-western Europe, the absence of reliable sapwood statistics and models for the prediction of missing sapwood rings for pine samples is remarkable. We have therefore produced sapwood statistics based on data from 776 pine trees with ages from 15 to 345 years. The material consists of both living trees and historical timber, with varying growth rates, geographic settings, and from different soil types. When the whole material is considered, the average age of the trees is 103 years, and the number of sapwood rings is 54 ± 15 (1 SD), but range from 18 to 129. Trees less than 100-years in age contained 46 ± 11 (1 SD) sapwood rings and had an average tree-ring width (TRW) of 1.76 mm. With increasing age, the average TRW decreased while the number of sapwood rings increased. The average TRW of 101–200-year-old trees is 0.99 mm while the samples contained 63 ± 12 (1 SD) sapwood rings. For trees older than 201 years, the average TRW is 0.64 mm while the number of sapwood rings increased to 85 ± 16 (1 SD). The two most important factors in determining the number of sapwood rings for a given tree when only heartwood statistics are available proved to be (i) the number of heartwood rings and (ii) the average TRW of the heartwood rings. For incomplete samples, we have therefore developed a statistical model based on the sample’s heartwood rings (number and average width) to compute a prediction interval for the total number of rings. The sapwood and heartwood statistics suggest a statistical model for the number of sapwood rings with mean that increase with the number of heartwood rings. Furthermore, the average number of sapwood rings decreases with the mean width of the heartwood rings. However, the predictive power of the mean width is limited when the number of heartwood rings has already been taken into account. Thus, we suggest making predictions for the number of sapwood rings using only the number of heartwood rings. Predictions of the number of sapwood rings based on the statistical model where convincing in the case of the three different datasets that were analysed. The certainty in these predictions was such that the width of the 80% and 95% prediction intervals ranged 28–34 and 45–52 sapwood rings, respectively. Additionally, we demonstrate how make predictions when there is information about the number of remaining sapwood rings in a given sample. To make the sapwood model available, we present a free online R package for fitting our models and an online software dashboard.  相似文献   

6.
As the proportion of sapwood (SW) transformed into heartwood(HW) is irregular both radially and longitudinally in trunksof Maritime pine (Pinus pinaster Ait.), it has been suggestedthat HW formation is a developmental process, regulated internallywithin the tree. In trees where stem growth is eccentric dueto stem lean or wind action, the number of annual growth ringsof SW transformed into HW is greater on the compressed sideof the tree. To determine the contribution to bending stiffness,if any, of this prematurely formed HW, four point bending testswere carried out on fresh HW and SW samples taken from the samegrowth ring, or neighbouring growth rings, at different cross-sectionalpositions at a height of 2 m from six 52-year-old Maritime pines.The mean (±s.e.) modulus of elasticity (E) was 7.6 ±0.3 GPa (longitudinal direction) for all samples. No significantdifferences in E were found between HW and SW; thus HW doesnot play a significant mechanical role in bending stiffness.To test a second hypothesis that early HW formation on the compressedside of trees may maintain a constant, optimal volume of SWaround the tree, the Pipe Model Theory was applied to 12 52-year-oldleaning Maritime pines (angle of lean varied from 0–22°).The surface area (S) of the SW was determined at different heightsup the trunk and correlated with crown surface area (Scrown).Regressions between SSWandScrown were highly significant, therebysupporting the theory that HW formation and extension is controlledinternally in Maritime pine. HW formation in Maritime pine thenserves to maintain an optimal proportion of functional SW whichis an important criterion for survival in a species often subjectedto severe drought for long periods. Copyright 2001 Annals ofBotany Company Heartwood, sapwood, bending test, Pipe Model Theory, Pinus pinaster  相似文献   

7.
European beech (Fagus sylvatica) facultatively develops red heartwood, which decreases the value of its timber and is difficult to predict in standing trees. According to current theory, the absence of oxygen prevents discolouration in the wood of uninjured trees, and red heartwood forms when oxygen enters the stem through injuries. This theory requires that oxygen concentrations in uncoloured wood are generally very low, and that oxygen can diffuse several metres in the centre of a stem, bypassing the respiring sapwood. Oxygen concentrations measured at different depth in stems with and without red heartwood varied strongly and were generally depleted relative to the air, but rarely close to 0. Concentrations in red heartwood were somewhat, though not significantly higher than in the inner wood of trees without red heartwood. The colour of wood exposed to different oxygen concentrations changed strongly at higher concentrations, but concentrations in standing stems are generally high enough for discolouration. Model calculations suggested that only massive injuries that kill most sapwood at an entry point would allow high amounts of oxygen to penetrate to the core, in which case it may diffuse several metres in the axial direction without being consumed by respiring sapwood. However, given the relatively high diffusion in axial direction, oxygen should spread within a few days, not several years as the development of red heartwood appears to take. These measurements and calculations suggested that, while oxygen is required for beech red heartwood discoloration, it is not the only factor involved but could act by affecting the activity of micro-organisms.  相似文献   

8.
Elucidation of the mechanisms involved in long-distance water transport in trees requires knowledge of the water distribution within the sapwood and heartwood of the stem as well as of the earlywood and latewood of an annual ring. X-ray computed tomography is a powerful tool for measuring density distributions and water contents in the xylem with high spatial resolution. Ten- to 20-year-old spruce (Picea abies L. KARST.) and oak (Quercus robur) trees grown in the field were used throughout the experiments. Stem and branch discs were collected from different tree heights, immediately deep frozen, and used for the tomographic determinations of spatial water distributions. Results are presented for single-tree individuals, demonstrating heartwood and sapwood distribution throughout their entire length as well as the water relations in single annual rings of both types of wood. Tree rings of the sapwood show steep water gradients from latewood to earlywood, whereas those of the heartwood reflect water deficiency in both species. Although only the latest two annual rings of the ringporous species are generally assumed to transport water, we found similar amounts of water and no tyloses in all rings of the oak sapwood, which indicates that at least water storage is important in the whole sapwood.  相似文献   

9.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

10.
The distribution of the above-ground and below-ground biomass of Scots pine in southern Finland were investigated in trees of different ages (18–212 years) from two types of growth site. Secondly, some structural regularities were tested for their independence of age and growth site. Trees were sampled from dominant trees which could be expected to have a comparable position in stands of all ages. All stands were on sorted sediments. The biomass of the sample trees (18 trees) was divided into needles, branch sapwood and heartwood, stem sapwood and heartwood, stem bark, stump, large roots (diameter >20 cm), coarse roots (five classes) and fine roots. The amount of sapwood and heartwood was also estimated from the below-ground compartments. Trees on both types of growth site followed the same pattern of development of the relative shares of biomass compartments, although the growth rates were faster on the more fertile site. The relative amount of sapwood peaked after canopy closure, coinciding with the start of considerable heartwood accumulation. The relative amount of needles and fine roots decreased with age. The same was true of branches but to a lesser degree. The relative share of the below-ground section was independent of tree age. Foliage biomass and sapwood cross-sectional area were linearly correlated, but there were differences between the growth sites. Needle biomass was linearly correlated with crown surface area. The fine root to foliage biomass ratio showed an increasing trend with tree age.  相似文献   

11.
为探究大花序桉(Eucalyptus cloeziana)心材比例差异显著的不同家系间心边材变异规律,挖掘心材变异相关的候选基因,为珍贵用材树种高效培育及育种利用提供基因资源。以18 a生的2个心材比例差异显著的大花序桉家系为材料(家系1和2),各制作解析木3株,沿着树干以1 m为区间分段截取圆盘,测量东西和南北2个方向的带皮直径、去皮直径、总年轮数、边材年轮数、边材直径,并开展心材和边材径向和轴向分析。同时利用各解析木胸径处初生木质部样品进行DNA混池测序,发掘等位基因频率差异显著的SNP位点并挖掘相关功能基因。结果表明,大花序桉边材宽度和心材半径的方位变异中家系2大于家系1,平均差值分别为0.7和5.5 cm,在随树高的变异中,家系1和2的心材半径和心材年轮数的下降速率分别为0.40和0.64及0.43和0.36。两家系间基本密度差异显著,家系1为0.80~0.82 g/cm3,家系2为0.75~0.78 g/cm3。基本密度与树高、横截面半径和心材半径呈显著负相关,与顺纹抗拉强度、弦面硬度和部分力学性质呈显著正相关。利用DNA混池测序共...  相似文献   

12.
Eastern redcedar is widespread in the US and produces significant amount of biomass. Open-grown trees invade abandoned fields and compete with valuable forage species in pastures and rangelands. Value-added product development from redcedar is vital for management of eastern redcedar. Cedarwood oil is a valuable component which can be used for further value-added product development. This study examined the effect of age on the distribution of oil in redcedar tree segments. Trunks of eastern redcedar (Juniperus virginiana L.) trees at different stages of growth (26-63 years old) were divided into three sections (top, center and lower). Each section was fractionated separately into bark, heartwood and sapwood segments. Heartwood and sapwood samples from each tree section were analyzed for oil content and composition. A hydrodistillation method was used for oil extraction. Volatile components of tree segments were examined by using a Gas Chromatograph-headspace analysis technique. The heartwood of eastern redcedar contained significantly higher oil than sapwood. Older trees had more oil in the heartwood than younger trees. Both redcedar bark and leaves contained significantly lower oil content than the cedarwood. There were also significant differences in the oil composition of bark, leaves and wood fractions. Cedarwood oil extraction may benefit from prior separation of tree segments prior to oil extraction. However, the economic feasibility of separation prior to an extraction process needs to be further studied. Required extra capital investment and operating costs need to be examined, as well as whether sapwood is worth processing.  相似文献   

13.
14.
  • The wood economics spectrum provides a general framework for interspecific trait–trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co‐varies together with elevation, tree growth and height at the within‐species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs).
  • In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables.
  • The variation in wood density reported in this study was narrow (ca. 0.4–0.6 g cm?3) relative to global density variation (ca. 0.3–1.0 g cm?3). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density.
  • Negative across‐species trends found in the growth–wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density.
  相似文献   

15.
We analysed sapwood characteristics in 344 pedunculate oak (Quercus robur L.) samples from the south-western part of the Pannonian Basin. The samples came from 13 sites, located in Slovenia, Croatia and Serbia. The trees had an average of 13.3 sapwood rings, with a minimum of 5 and maximum of 32. Fifteen log-log linear regression models were employed to assess the statistical relationship between sapwood and heartwood variables. The number of sapwood rings (NSW), which is usually needed in dendroarchaeological dating, is significantly related to the number of heartwood rings (NHW), heartwood width (WHW) and heartwood growth rate (GHW). Older and more slowly growing trees had a higher average number of sapwood rings. Using NHW and WHW, we employed an additional multiple regression model and calculated coefficients for NSW predictions for real-world dendroarchaeological dating from the south-western part of the Pannonian Basin.  相似文献   

16.
《Annals of botany》1997,79(5):473-478
Dissection and mechanical bending experiments showed that the cross-sectional area and elastic moduli of sap- and heartwood varied within the trunk and branches as a function of the distance from the top of a 43-year-old black locust tree (Robinia pseudoacaciaL.). Wood in branches less than 1 m from the top of the tree consisted entirely of sapwood; the majority of the wood from more basipetal (and older) parts of the tree was heartwood. The Young's elastic moduli of sap- and heartwood increased towards the base of the trunk, and, on average, the modulus of the sapwood was 35%less than that of the heartwood. Younger, more distal tree limbs, therefore, were more flexible than older portions of the same tree. Simple bending experiments showed that the flexural rigidity of young limbs was governed by the location, physical properties, and the relative quantities of the two types of wood. The rigidity of limbs increased toward the base of the tree, and was dominated by sapwood in young limbs and by heartwood in the oldest parts of the tree. These trends predict that the younger, distal limbs of this tree can more easily deflect and bend in the wind, thereby reducing drag and the total bending moment on the tree trunk, while older limbs and the trunk are sufficiently rigid to support static self-loadings. Further study, however, is required to determine whether the trends reported here apply to all trees of this species and to trees of different species.  相似文献   

17.
Fluctuations in sulphur (S) content in tree rings were analysed for a 93 years long period (1915–2007) by laser ablation system coupled to an inductively coupled plasma mass spectrometer from three Swiss stone pine (Pinus cembra L.) trees grown in the Rachitis Cirque, Calimani Mts, Eastern Carpathians. Investigated domain envelops the period of degraded climatic sensitivity of pines’ growth. Chemical data were standardized for sapwood and heartwood separately. The averaged sulphur record calculated from the three individual records unequivocally presents anomalously high S content for the tree rings dated to 1970s and 1980s. Ring-width fluctuation portrays changes of summer temperature but from 1966 to 1986 pines produced apparently larger rings than the corresponding summer temperatures can explain. This deviating interval coincides with the period of exploitation in the nearby sulphur mine. The elevated S content in tree rings refers probably to the dispersion of S-rich dust around the mine owing to the opencast type of exploitation. The divergent growth trend and degraded climatic signal likely due to the anthropogenic altered nutritional status of the site, as residues from nitrogen fertilizer, applied as a compound of explosive in the opencast sulphur exploitation, could be deposited on the surrounding forest.  相似文献   

18.
This study tests whether crown and stem development in Norway spruce could be described using a modified profile theory. 29 trees from three age-groups (25, 67, 86) with different treatments (unthinned, normally and intensively thinned) were destructively sampled. Crown ratio and crown length varied between age groups and treatments. Crown width was positively correlated with crown length, but branch length along the crown depended on tree age and growing space. Foliage mass density peaked at a relative crown height of 50–70% in middle-aged and mature stands, while young crowns were densest and widest at the base. Foliage mass was predictable from branch and stem cross-sectional area, provided the distance from the top was included. The ratio of foliage mass to branch cross-sectional area increased for 2–4 m down from the tip of the crown, then started to decrease. The relationship between cumulative foliage mass and stem cross-sectional area was non-linear along the stem in the upper crown, but the ratio of cumulative branch to stem cross-sectional area was linear. Trees in the mature and unthinned stands had more cross-sectional area in branches relative to stems than in the young and thinned stands. We conclude that the profile theory needs modification regarding (1) crown shape which varies with age and growing space, and (2) the ratio of foliage mass to branch area which varies along the stem. Both aspects emphasise the need to include impacts of disuse of sapwood pipes in models of crown and stem development.  相似文献   

19.
The amounts of free sterols, steryl esters and lipid phosphorus were determined in the sapwood and heartwood of mature, and in the outer and inner sapwood of young Pinus sylvestris trees. In the mature trees (up to 70 years old) the heartwood contains significantly higher amounts of free sterols than the sapwood. No radial gradient can be demonstrated in the amounts of steryl esters. Lipids extracted from the sapwood contain higher amounts of phosphorus than those from the heartwood. Stems of young Pinus sylvestris trees (up to 13 years old) show in the inner sapwood higher amounts of both free sterols and steryl esters than the peripheral younger wood zone. The inner sapwood of the young stems shows slightly higher amounts of lipid phosphorus than the outer sapwood. The results indicate that Pinus sylvestris accumulates both free sterols and steryl esters in the stems at a very early stage of the life cycle. Sterol accumulation in the innermost parts of the stems seems not to depend on heartwood formation.  相似文献   

20.
Hoch G  Körner C 《Oecologia》2003,135(1):10-21
Mature and old growth trees of varying sapwood thickness were compared with regard to stem respiration. An increment core-based, laboratory method under controlled temperature was used to measure tissue-level respiration (termed respiratory potential) of ten different tree species. Bark (dead outer and live inner combined), sapwood, and heartwood thickness measurements were used to predict sapwood volume from stem diameter (including bark) for four of the ten species. These predictions of sapwood volume were used to scale respiratory potential to the main-bole level (excluding all branches). On the core level, species that maintained narrow sapwood (8–16% of bole radius) such as Pseudotusga menziesii, Taxus brevifolia, and Thuja plicata, had sapwood respiratory potentials in the lower bole that were 50% higher (P<0.05) than species with wide sapwood (>16% of bole radius), such as Abies amabilis, Pinus monticola, and Tsuga heterophylla. This pattern was not observed for inner bark respiratory potential, or for sapwood respiratory potential within the crown. On the main-bole level, respiratory potential per unit volume was inversely correlated to the live bole volumetric fraction (inner bark plus sapwood divided by whole bole volume) (Adj. R2=0.6). Specifically, tree species with 18–20% of the main bole alive potentially respired 1.3–3 times more per unit live bole volume than species with over 40%, suggesting that the live bole was less metabolically active in tree species that maintained large volumes of sapwood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号