共查询到20条相似文献,搜索用时 0 毫秒
1.
Accurate measurement of the coupled intervertebral motions is helpful for understanding the etiology and diagnosis of relevant diseases, and for assessing the subsequent treatment. No study has reported the in vivo, dynamic and three-dimensional (3D) intervertebral motion of the cervical spine during active axial rotation (AR) and lateral bending (LB) in the sitting position. The current study fills the gap by measuring the coupled intervertebral motions of the subaxial cervical spine in ten asymptomatic young adults in an upright sitting position during active head LB and AR using a volumetric model-based 2D-to-3D registration method via biplane fluoroscopy. Subject-specific models of the individual vertebrae were derived from each subject’s CT data and were registered to the fluoroscopic images for determining the 3D poses of the subaxial vertebrae that were used to obtain the intervertebral kinematics. The averaged ranges of motion to one side (ROM) during AR at C3/C4, C4/C5, C5/C6, and C6/C7 were 4.2°, 4.6°, 3.0° and 1.3°, respectively. The corresponding values were 6.4°, 5.2°, 6.1° and 6.1° during LB. Intervertebral LB (ILB) played an important role in both AR and LB tasks of the cervical spine, experiencing greater ROM than intervertebral AR (IAR) (ratio of coupled motion (IAR/ILB): 0.23–0.75 in LB, 0.34–0.95 in AR). Compared to the AR task, the ranges of ILB during the LB task were significantly greater at C5/6 ( p=0.008) and C6/7 ( p=0.001) but the range of IAR was significantly smaller at C4/5 ( p=0.02), leading to significantly smaller ratios of coupled motions at C4/5 ( p=0.0013), C5/6 ( p<0.001) and C6/7 ( p=0.0037). The observed coupling characteristics of the intervertebral kinematics were different from those in previous studies under discrete static conditions in a supine position without weight-bearing, suggesting that the testing conditions likely affect the kinematics of the subaxial cervical spine. While C1 and C2 were not included owing to technical limitations, the current results nonetheless provide baseline data of the intervertebral motion of the subaxial cervical spine in asymptomatic young subjects under physiological conditions, which may be helpful for further investigations into spine biomechanics. 相似文献
2.
Measurement of static alignment of articulating joints is of clinical benefit and can be determined using image-based registration. We propose a method that could potentially improve the outcome of image-based registration by using initial manual registration. Magnetic resonance images of two wrist specimens were acquired in the relaxed position and during simulated grasp. Transformations were determined from voxel-based image registration between the two volumes. The volumes were manually aligned to match as closely as possible before auto-registration, from which standard transformations were obtained. Then, translation/rotation perturbations were applied to the manual registration to obtain altered initial positions, from which altered auto-registration transformations were obtained. Models of the radiolunate joint were also constructed from the images to simulate joint contact mechanics. We compared the sensitivity of transformations (translations and rotations) and contact mechanics to altering the initial registration condition from the defined standard. We observed that with increasing perturbation, transformation errors appeared to increase and values for contact force and contact area appeared to decrease. Based on these preliminary findings, it appears that the final registration outcome is sensitive to the initial registration. 相似文献
3.
The proportions of older and obese people are increasing in both the general and working populations worldwide. Older and obese individuals are more susceptible to work-related musculoskeletal disorders (MSDs) in comparison with healthy, younger individuals. Manual material handling (MMH) is associated with the development of work-related MSDs. Although previous research has suggested that one-handed carrying is a particularly undesirable method of MMH, the effects of one-handed carrying on trunk kinetics and kinematics among older and/or obese people have not been adequately studied. The objective of this study was to examine the effects of age and obesity on trunk angles and moments during dominant side one-handed carrying of various load magnitudes. Twenty (20) participants divided into four groups with respect to age (young and older) and obesity (obese and non-obese) carried different loads ( No-load [0 kg], Light [5.67 kg], and Heavy [10.21 kg]) in their dominant hand for approximately 6 m. Three-dimensional (3D) trunk angles and moments approximately about the L4/L5 vertebral segment were calculated using Visual3D. The findings indicated that while carrying a load in the dominant hand plays an important role in changing trunk kinematics and kinetics, the results were not dependent on age and/or obesity category. Absolute moments were greatest among participants in the obese groups; however, these moments were mitigated when normalized to body weight and height (%BW * Ht). Age did not exacerbate the effects of load magnitude on trunk kinetics and kinematics. 相似文献
4.
When skin-fixed marker trajectories are used to calculate 3D joint kinematics, the measurement errors (i.e. the difference between the trajectories of the external markers and those of the skeleton) influence to some extent the accuracy of the results, depending both on the calculation method and on the axes about which the rotations are expressed. The purpose of this paper is to compare several expressions of joint angular variations. Two kinematic concepts are used to calculate the changes in the orientation of the distal segment versus the proximal one: the first method consists of computing the components of the spatial attitude vector, the second one deals with the determination of elementary rotations about successive axes. For each of these methods, two sets of three axes are tested to express the results: the axes forming the reference frame affixed to the body segment adjacent to the joint (named fixed axes), and a set consisting of a first axis belonging to the proximal segment, a third axis belonging to the distal segment and a second (floating) axis defined as the cross-product between the two other ones (named mobile axes). To compare these four distinct expressions on the knee joint, numerical simulations of perturbed skin marker trajectories are performed, based on experimental data recorded by a Motion Analysis system during a normal gait cycle. A significant difference is pointed out only for the internal–external rotation angle, for which the best expression — from the viewpoint of sensitivity to experimental errors — is obtained using the components of the attitude vector in a segment-embedded reference frame. 相似文献
5.
三维图像的处理和操作需要将一般的断层序列插值成为具有各坐标轴一致的分辨率的体数据,而目前最常用的线性插值方法在层间距较大时会导致图像边缘模糊和出现伪影。Penney根据现有的非刚体匹配方法,提出了利用图像形变场数据的插值算法,大大提高了层间插值的质量。本文对Penney提出的算法进行了两方面的改进,在配准过程中用简单的单射性约束取代了复杂的平滑性约束,用邻域平均算法替代Penney使用的最邻近直线插值方法,并将新算法的实验结果与原算法、线性插值进行了对比,新算法在保持高质量插值的前提下提高了计算速度。该算法可以应用于精度要求比较高的体数据插值重建过程。 相似文献
6.
PurposeBiomechanical impairments are not apparent during walking in people with Joint Hypermobility Syndrome (JHS). This research explored biomechanical alterations during a higher intensity task, vertical jumping. Materials and methodsThis cross-sectional study compared a JHS group (n = 29) to a healthy control group (n = 30). Joint kinematics and kinetics were recorded using a Qualisys motion capture system synchronized with a Kistler platform. Independent sample t-tests and standardised mean differences (SMD) were used for statistical analysis. ResultsNo significant statistical or clinical differences were found between groups in joint kinematics and jump height (p ≥ 0.01). Sagittal hip and knee peak power generation were statistically lower in the JHS group during the compression phase (p ≤ 0.01), but not clinically relevant (SMD < 0.5). Clinically relevant reductions were found in the JHS group knee and ankle peak moments during the compression phase, and hip and knee peak power generation during the push phase (SMD ≥ 0.5), although these were not statistically significant (p ≥ 0.01). ConclusionThe JHS group achieved a similar jump height but with some biomechanical alterations. Further understanding of the joint biomechanical behavior could help to optimize management strategies for JHS, potentially focusing on neuromuscular control and strength/power training. 相似文献
7.
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work ( p<0.05) than the ankle joint at both landing heights. Substantial increase ( p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing. 相似文献
8.
This study aimed to identify adaptive changes in running kinematics and impact shock transmission as a function of head stability requirements. Fifteen strides from twelve recreational runners were collected during preferred speed treadmill running. Head stability demands were manipulated through real-time visual feedback that required head-gaze orientation to maintain within boxes of different sizes, ranging from 21° to 3° of visual angle with 3° decrements. The main outcome measures were tibial and head peak accelerations in the time and frequency domains (impact and active phases), shock transmission from tibia to head, stride parameters, and sagittal plane joint kinematics. Increasing head stability requirements resulted in decreases in the amplitude and integrated power of head acceleration during the active phase of stance. During the impact portion of stance tibial and head acceleration and shock transmission remained similar across visual conditions. In response to increased head stability requirements, participants increased stride frequency approximately 8% above preferred, as well as hip flexion angle at impact; stance time and knee and ankle joint angles at impact did not change. Changes in lower limb joint configurations (smaller hip extension and ankle plantar-flexion and greater knee flexion) occurred at toe-off and likely contributed to reducing the vertical displacement of the center of mass with increased head stability demands. These adaptive changes in the lower limb enabled runners to increase the time that voluntary control is allowed without embedding additional impact loadings, and therefore active control of the head orientation was facilitated in response to different visual task constraints. 相似文献
9.
During locomotion, mammalian limb postures are influenced by many factors including the animal's limb length and body mass. Polk (2002) compared the gait of similar-sized cercopithecine monkeys that differed limb proportions and found that longer-limbed monkeys usually adopt more extended joint postures than shorter-limbed monkeys in order to moderate their joint moments. Studies of primates as well as non-primate mammals that vary in body mass have demonstrated that larger animals use more extended limb postures than smaller animals. Such extended postures in larger animals increase the extensor muscle mechanical advantage and allow postures to be maintained with relatively less muscular effort (Polk, 2002; Biewener 1989). The results of these previous studies are used here to address two anthropological questions. The first concerns the postural effects of body mass and limb proportion differences between australopithecines and members of the genus Homo. That is, H. erectus and later hominins all have larger body mass and longer legs than australopithecines, and these anatomical differences suggest that Homo probably used more extended postures and probably required relatively less muscular force to resist gravity than the smaller and shorter-limbed australopithecines. The second question investigates how animals with similar size but different limb proportions differ in locomotor performance. The effects of limb proportions on gait are relevant to inferring postural and locomotor differences between Neanderthals and modern Homo sapiens which differ in their crural indices and relative limb length. This study demonstrates that primates with relatively long limbs achieve higher walking speeds while using lower stride frequencies and lower angular excursions than shorter-limbed monkeys, and these kinematic differences may allow longer-limbed taxa to locomote more efficiently than shorter-limbed species of similar mass. Such differences may also have characterized the gait of Homo sapiens in comparison to Neanderthals, but more experimental data on humans that vary in limb proportions are necessary in order to evaluate this question more thoroughly. 相似文献
10.
Scapula and humerus motion associated with common manual wheelchair tasks is hypothesized to reduce the subacromial space. However, previous work relied on either marker-based motion capture for kinematic measures, which is prone to skin-motion artifact; or ultrasound imaging for arthrokinematic measures, which are 2D and acquired in statically-held positions. The aim of this study was to use a fluoroscopy-based approach to accurately quantify glenohumeral kinematics during manual wheelchair use, and compare tasks for a subset of parameters theorized to be associated with mechanical impingement. Biplane images of the dominant shoulder were acquired during scapular plane elevation, propulsion, sideways lean, and weight-relief raise in ten manual wheelchair users with spinal cord injury. A computed tomography scan of the shoulder was obtained, and model-based tracking was used to quantify six-degree-of-freedom glenohumeral kinematics. Axial rotation and superior/inferior and anterior/posterior humeral head positions were characterized for full activity cycles and compared between tasks. The change in the subacromial space was also determined for the period of each task defined by maximal change in the aforementioned parameters. Propulsion, sideways lean, and weight-relief raise, but not scapular plane elevation, were marked by mean internal rotation (8.1°, 10.8°, 14.7°, −49.2° respectively). On average, the humeral head was most superiorly positioned during the weight-relief raise (1.6 ± 0.9 mm), but not significantly different from the sideways lean (0.8 ± 1.1 mm) (p = 0.191), and much of the task was characterized by inferior translation. Scaption was the only task without a defined period of superior translation on average. Pairwise comparisons revealed no significant differences between tasks for anterior/posterior position (task means range: 0.1–1.7 mm), but each task exhibited defined periods of anterior translation. There was not a consistent trend across tasks between internal rotation, superior translation, and anterior translation with reductions in the subacromial space. Further research is warranted to determine the likelihood of mechanical impingement during these tasks based on the measured task kinematics and reductions in the subacromial space. 相似文献
11.
Peptide receptor radionuclide therapy (PRRT) is an effective MRT (molecular radiotherapy) treatment, which consists of multiple administrations of a radiopharmaceutical labelled with 177Lu or 90Y. Through sequential functional imaging a patient specific 3D dosimetry can be derived. Multiple scans should be previously co-registered to allow accurate absorbed dose calculations. The purpose of this study is to evaluate the impact of image registration algorithms on 3D absorbed dose calculation.A cohort of patients was extracted from the database of a clinical trial in PRRT. They were administered with a single administration of 177Lu-DOTATOC. All patients underwent 5 SPECT/CT sequential scans at 1 h, 4 h, 24 h, 40 h, 70 h post-injection that were subsequently registered using rigid and deformable algorithms. A similarity index was calculated to compare rigid and deformable registration algorithms. 3D absorbed dose calculation was carried out with the Raydose Monte Carlo code.The similarity analysis demonstrated the superiority of the deformable registrations (p < .001).Average absorbed dose to the kidneys calculated using rigid image registration was consistently lower than the average absorbed dose calculated using the deformable algorithm (90% of cases), with percentage differences in the range [−19; +4]%. Absorbed dose to lesions were also consistently lower (90% of cases) when calculated with rigid image registration with absorbed dose differences in the range [−67.2; 100.7]%. Deformable image registration had a significant role in calculating 3D absorbed dose to organs or lesions with volumes smaller than 100 mL.Image based 3D dosimetry for 177Lu-DOTATOC PRRT is significantly affected by the type of algorithm used to register sequential SPECT/CT scans. 相似文献
12.
Background and purposeTo evaluate the impact of deformation magnitude and image modality on deformable-image-registration (DIR) accuracy using Halcyon megavoltage cone beam CT images (MVCBCT). Materials and methodsPlanning CT images of an anthropomorphic Head phantom were aligned rigidly with MVCBCT and re-sampled to achieve the same resolution, denoted as pCT. MVCBCT was warped with twenty simulated pre-known virtual deformation fields (T i, i = 1–20) with increasing deformation magnitudes, yielding warped CBCT (wCBCT). The pCT and MVCBCT were registered to wCBCT respectively (Multi-modality and Uni-modality DIR), generating deformation vector fields V i and V i′ (i = 1–20). V i and V i′ were compared with T i respectively to assess the DIR accuracy geometrically. In addition, V i, T i, and V i′ were applied to pCT, generating deformed CT (dCT i), ground-truth CT (G i) and deformed CT′ (dCT i′) respectively. The Hounsfield Unit (HU) on these virtual CT images were also compared. ResultsThe mean errors of vector displacement increased with the deformation magnitude. For deformation magnitudes between 2.82 mm and 7.71 mm, the errors of uni-modality DIR were 1.16 mm ~ 1.73 mm smaller than that of multi-modality (p = 0.0001, Wilcoxon signed rank test). DIR could reduce the maximum signed and absolute HU deviations from 70.8 HU to 11.4 HU and 208 HU to 46.2 HU respectively. ConclusionsAs deformation magnitude increases, DIR accuracy continues to deteriorate and uni-modality DIR consistently outperformed multi-modality DIR. DIR-based adaptive radiotherapy utilizing the noisy MVCBCT images is only conditionally applicable with caution. 相似文献
13.
Forces at different heights and orientations are often carried by hands while performing occupational tasks. Trunk muscle activity and spinal loads are likely dependent on not only moments but also the orientation and height of these forces. Here, we measured trunk kinematics and select superficial muscle activity of 12 asymptomatic subjects while supporting forces in hands in upright standing. Magnitude of forces in 5 orientations (−25°, 0°, 25°, 50° and 90°) and 2 heights (20 cm and 40 cm) were adjusted to generate flexion moments of 15, 30 and 45 N m at the L5-S1 disc centre. External forces were of much greater magnitude when applied at lower elevation or oriented upward at 25°. Spinal kinematics remained nearly unchanged in various tasks.Changes in orientation and elevation of external forces substantially influenced the recorded EMG, despite similar trunk posture and identical moments at the L5-S1. Greater EMG activity was overall recorded under larger forces albeit constant moment. Increases in the external moment at the L5-S1 substantially increased EMG in extensor muscles ( p < 0.001) but had little effect on abdominals; e.g., mean longissimus EMG for all orientations increased by 38% and 75% as the moment level altered from 15 N m to 30 N m and to 45 N m while that in the rectus abdominus increased only by 2% and 4%, respectively. Under 45 N m moment and as the load orientation altered from 90° to 50°, 25°, 0° and −25°, mean EMG dropped by 3%, 12%, 12% and 1% in back muscles and by 17%, 17%, 19% and 13% in abdominals, respectively. As the load elevation increased from 20 cm to 40 cm, mean EMG under maximum moment decreased by 21% in back muscles and by 17% in abdominals.Due to the lack of EMG recording of deep lumbar muscles, changes in relative shear/compression components and different net moments at cranial discs despite identical moments at the caudal L5-S1 disc, complementary model studies are essential for a better comprehension of neuromuscular strategies in response to alterations in load height and orientation. 相似文献
14.
PurposeEvaluation of Raystation ANAtomically CONstrained Deformation Algorithm (ANACONDA) performance to different urinary bladder filling levels in male pelvis anatomic site varying the controlling Regions Of Interest (ROIs). MethodsDifferent image datasets were obtained with ImSimQA (Oncology System Limited, Shrewsbury, UK) to evaluate ANACONDA performances (RaySearch Laboratories, Stockholm, Sweden). Deformation vector fields were applied to a synthetic man pelvis and a real patient computed tomography (CT) dataset (reference CTs) resulting in deformed CTs (target CTs) with various bladder filling levels. Different deformable image registrations (DIRs) were generated between each target CTs and reference CTs varying the controlling ROIs subset. Deformed ROIs were mapped from target CT to reference CT and then compared to reference ROIs. Evaluation was performed by Dice Similarity Coefficient (DSC), Correlation Coefficient (CC), Mean Distance to Agreement (MDA), maximum Distance to Agreement (maxDA) and with the introduction of global DSC (global_DSC) and global CC (global_CC) parameters. ResultsIn both synthetic and real patient CT cases, DSC scored less than 0.75 and MDA greater than 3 mm when no ROIs or only bladder were exploited as controlling ROI. DSC and CC increased by increasing the number of controlling ROIs selected whereas, an opposite behavior was observed for MDA and maxDA. ConclusionsANACONDA performances can be influenced by bladder filling fluctuation if no controlling ROIs are selected. Global_DSC and global_CC are useful parameters to quantitatively compare DIR algorithms. DIR performances improve by increasing the number of controlling ROIs selected, reaching a saturation level after a defined ROIs subset selection. 相似文献
15.
神经系统中存在大量下行投射,与上行输入一起形成复杂的前馈与反馈回路,调控神经信号的传导和处理,但目前对皮层内反馈投射的功能作用认识还比较薄弱.通过微量注射抑制性神经递质γ-氨基丁酸(γ-aminobutyric acid,GABA),使猫纹外皮层后内侧外上雪氏区(area posteromedial lateral suprasylvian,PMLS)局部可逆性失活,使用胞外记录方法,研究初级视皮层17区神经元反应特性的变化.实验结果显示,PMLS区失活后,17区细胞对运动刺激的反应总体减弱,反应的相对稳定性基本不变,最高发放率/自发之比有所下降.与此同时,细胞的方向选择性指数减小,朝向选择性无显著变化.除少数"双向"反应细胞外,绝大部分细胞的最优方向基本不变.进一步分析发现,细胞对各个方向刺激的反应普遍下降,最优方向上的下降程度最大,是导致方向选择性减弱的主要原因.这些结果表明,PMLS区反馈投射可增强初级视皮层的方向选择性,而对朝向选择性影响有限.这一作用特点体现了PMLS区在皮层中偏重处理运动视觉信息的功能. 相似文献
16.
目的:探讨旋转平台与后稳定固定平台假体在人工膝关节置换术(TKA)后的临床治疗效果。方法:选择2008年8月到2014年8月在我院接收人工膝关节置换术的218例患者,随机分为对照组和实验组,分别采用后稳定固定平台假体和旋转平台假体行TKA。观察并记录两组患者治疗前和治疗后6个月世界膝关节学会(KSS)评分、美国膝关节学会(HSS)评分和膝关节的屈曲度(ROM),以及治疗后6个月并发症的发生情况。结果:治疗后,两组患者KSS评分、HSS评分及ROM评分均明显高于治疗前,差异有统计学意义(P0.05);两组患者KSS评分、HSS评分及ROM评分相比,差异无统计学意义(P0.05)。实验组患者并发症发生率(9.17%)和对照组患者并发症发生率(10.09%)相比,无统计学意义(P0.05)。结论:旋转平台与后稳定固定平台假体在TKA中均能有效改善膝关节的功能,两者疗效相近,均值得在临床推广应用。 相似文献
17.
Running is a popular form of recreation, but injuries are common and may be associated with abnormal joint motion. The objective of this study was to determine the effect of three footwear conditions – barefoot (BF), an ultraflexible training shoe (FREE), and a motion control shoe (MC) – on 3D foot and ankle motion. Dynamic, biplane radiographic images were acquired from 12 runners during overground running. 3D rotations of the tibiotalar and subtalar joints were quantified in terms of plantarflexion/dorsiflexion (PF/DF), inversion/eversion (IN/EV) and internal/external rotation (IR/ER). Across the early stance phase (defined as footstrike to heel-off), BF running demonstrated greater tibiotalar joint range of motion for PF/DF (28.2±8.3°) and IR/ER (7.0±1.4°) than the shod conditions (FREE: PF/DF=15.1±5.9°, IR/ER=4.8±2.1°; MC: PF/DF=15.0±6.2°, IR/ER=4.3±0.7°). Also at the tibiotalar joint, BF running resulted in a position significantly more plantarflexed (BF: 2.0±12.5°, FREE: 15.7±12.2°, MC: 16.5±9.3°) and internally rotated (BF: 12.9±4.5°, FREE: 10.7±4.3°, MC: 10.6±3.9°) at footstrike compared to both shod conditions. No differences were detected between the shod conditions at any point in the early stance phase at the tibiotalar joint. The MC condition demonstrated significant differences compared to FREE at several points throughout the early stance phase at the subtalar joint, with the greatest differences seen at 30% in PF/DF (MC −1.4±8.8°: FREE: −0.5±9.0°), IN/EV (MC −8.1±5.7°: FREE −6.3±5.5°) and IR/ER (MC −9.5±5.3°: FREE: −8.7±5.2°). These findings indicate that footwear has subtle effects on joint motion mainly between BF and shod conditions at the tibiotalar joint and between shod conditions at the subtalar joint. 相似文献
18.
Invasive species are a serious threat to biodiversity worldwide and predicting whether an introduced species will first establish and then become invasive can be useful to preserve ecosystem services. Establishment is influenced by multiple factors, such as the interactions between the introduced individuals and the resident community, and demographic and environmental stochasticity. Field observations are often incomplete or biased. This, together with an imperfect knowledge of the ecological traits of the introduced species, makes the prediction of establishment challenging. Methods that consider the combined effects of these factors on our ability to predict the establishment of an introduced species are currently lacking. We develop an inference framework to assess the combined effects of demographic stochasticity and parameter uncertainty on our ability to predict the probability of establishment following the introduction of a small number of individuals. We find that even moderate levels of demographic stochasticity influence both the probability of establishment, and, crucially, our ability to correctly predict that probability. We also find that estimation of the demographic parameters of an introduced species is fundamental to obtain precise estimates of the interaction parameters. For typical values of demographic stochasticity, the drop in our ability to predict an establishment can be 30% when having priors on the demographic parameters compared to having their accurate values. The results from our study illustrate how demographic stochasticity may bias the prediction of the probability of establishment. Our method can be applied to estimate probability of establishment of introduced species in field scenarios, where time series data and prior information on the demographic traits of the introduced species are available. 相似文献
19.
The gleno-humeral (GH) rotation centre is typically estimated using predictive or functional methods, however these methods may lead to location errors. This study aimed at determining a location error threshold above which statistically significant changes in the values of kinematic and kinetic GH parameters occur. The secondary aims were to quantify the effects of the direction of mislocation (X, Y or Z axis) of the GH rotation centre on GH kinematic and kinetic parameters. Shoulder flexion and abduction movements of 11 healthy volunteers were recorded using a standard motion capture system (Vicon, Oxford Metrics Ltd, Oxford, UK), then GH kinematic and kinetic parameters were computed. The true position of the GH rotation centre was determined using a low dose x-ray scanner (EOS? imaging, France) and this position was transferred to the motion data. GH angles and moments were re-computed for each position of the GH rotation centre after errors of up to ± 20?mm were added in increments of ± 5?mm to each axis. The three-dimensional error range was 5?mm to 34.65?mm. GH joint angle and moment values were significantly altered from 10?mm of three-dimensional error, and from 5?mm of error on individual axes. However, errors on the longitudinal and antero-posterior axes only caused very small alterations of GH joint angle and moment values respectively. Future research should develop methods of GH rotation centre estimation that produce three-dimensional location errors of less than 10?mm to reduce error propagation on GH kinematics and kinetics. 相似文献
20.
In species distribution analyses, environmental predictors and distribution data for large spatial extents are often available in long‐lat format, such as degree raster grids. Long‐lat projections suffer from unequal cell sizes, as a degree of longitude decreases in length from approximately 110 km at the equator to 0 km at the poles. Here we investigate whether long‐lat and equal‐area projections yield similar model parameter estimates, or result in a consistent bias. We analyzed the environmental effects on the distribution of 12 ungulate species with a northern distribution, as models for these species should display the strongest effect of projectional distortion. Additionally we choose four species with entirely continental distributions to investigate the effect of incomplete cell coverage at the coast. We expected that including model weights proportional to the actual cell area should compensate for the observed bias in model coefficients, and similarly that using land coverage of a cell should decrease bias in species with coastal distribution. As anticipated, model coefficients were different between long‐lat and equal‐area projections. Having progressively smaller and a higher number of cells with increasing latitude influenced the importance of parameters in models, increased the sample size for the northernmost parts of species ranges, and reduced the subcell variability of those areas. However, this bias could be largely removed by weighting long‐lat cells by the area they cover, and marginally by correcting for land coverage. Overall we found little effect of using long‐lat rather than equal‐area projections in our analysis. The fitted relationship between environmental parameters and occurrence probability differed only very little between the two projection types. We still recommend using equal‐area projections to avoid possible bias. More importantly, our results suggest that the cell area and the proportion of a cell covered by land should be used as a weight when analyzing distribution of terrestrial species. 相似文献
|