首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-10 is an anti-inflammatory cytokine that suppresses NO synthase (NOS) and production of NO; its lack may promote NO production and alterations in cytokines modulated by NO with allergic airway inflammation (AI), such as IL-18 and IL-4. Therefore, we induced AI in IL-10 knockout ((-/-)) and IL-10-sufficient C57BL/6 (C57) mice with inhaled OVA and measured airway NO production, as exhaled NO (E(NO)) and bronchoalveolar lavage fluid nitrite levels. E(NO) and nitrite levels were elevated significantly in naive IL-10(-/-) mice as compared with C57 mice. With AI, E(NO) and nitrite levels increased in C57 mice and decreased in IL-10(-/-) mice. IL-18 production fell with both AI and addition of S-nitroso-N-acetyl-d,l-penicillamine (a NO donor) but was not significantly increased by chemical NOS inhibition by l-N(5)-(1-iminoethyl)-ornithine. IL-4 AI was increased significantly (up to 10-fold greater) in the absence of IL-10 but was reduced significantly with chemical inhibition of NOS. Airway responsiveness was lower in IL-10(-/-) mice and was associated with alteration in production of NO and IL-4. Thus, IL-4 production was increased, and likely decreased NO production, in a way not predicted by the absence of IL-10. Inhibition of IL-4 production, with inhibition of NOS in the absence of IL-10, demonstrated the importance of a NO and IL-4 feedback mechanism regulating this interaction.  相似文献   

2.
Induction of nonspecific resistance to Schistosoma mansoni infection after the i.v. injection of viable BCG was investigated in outbred mice and a panel of inbred and H-2 congenic strains. Significant protection was induced in CF1, A/J, C57BL/6, C57BL/10, DBA/2, C57BR, and SJL mice. BALB/c mice were not protected whereas CBA and C3H mice expressed intermediate degrees of protection. Expression of the protective phenomenon is not controlled by genes within the MHC as shown by the marked differences in response between BALB/c and DBA/2 (H-2d) as well as between C57BR and C3H (H-2k) mice. H-2 congenic strains with C57BL/10 background (B10.A and B10.D2) were high responders. BALB.B10 mice carrying the high responder (B10) MHC on the nonresponder (BALB/c) background were not protected. The degree of splenic hypertrophy did not correlate with the expression of nonspecific resistance. These results demonstrate that, in addition to controlling specific immune responses, genetic differences influence the nonspecific protective phenomena related to BCG administration as well.  相似文献   

3.
The simian virus 40 (SV40) large tumor antigen (Tag) is a virus-encoded oncoprotein which is the target of a strong cytotoxic T-lymphocyte (CTL) response. Three immunodominant H-2(b)-restricted epitopes, designated epitopes I, II/III, and IV, have been defined. We investigated whether induction of CTLs directed against these Tag epitopes might control Tag-induced tumors in SV11(+) (H-2(b)) mice. SV11(+) mice develop spontaneous tumors of the choroid plexus due to expression of SV40 Tag as a transgene. We demonstrate that SV11(+) mice are functionally tolerant to the immunodominant Tag CTL epitopes. CTLs specific for the H-2Kb-restricted Tag epitope IV were induced in SV11(+) mice following adoptive transfer with unprimed C57BL/6 spleen cells and immunization with recombinant vaccinia viruses expressing either full-length Tag or the H-2Kb-restricted epitope IV as a minigene. In addition, irradiation of SV11(+) mice prior to adoptive transfer with unprimed C57BL/6 spleen cells led to the priming of epitope IV-specific CTLs by the endogenous Tag. Induction of epitope IV-specific CTLs in SV11(+) mice by either approach correlated with increased life span and control of the choroid plexus tumor progression, indicating that CTLs specific for the immunodominant Tag epitope IV control the progressive growth of spontaneous tumors induced by this DNA virus oncogene in transgenic mice.  相似文献   

4.
There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.  相似文献   

5.
6.
The authors studied the time course of MIF production by lymphocytes of CBA (H-2k), C57BL/6J (H-2b) and (CBA X C57BL/6J) F1 (H-2b/H-2k) mice sensitized to Candida albicans antigens. The interstrain differences in lymphokin production were identified, CBA mice appeared to be highly responsive, whereas C57BL/6J to be low-responsive. Partial hybridological analysis made it possible to ascertain the presence of the dominant type heredity of high MIF production in response to Candida albicans antigens.  相似文献   

7.
Wang JS  Lin CC  Chen JK  Wong MK 《Life sciences》2000,66(20):1937-1948
This study investigates how chronic exercise affects Ox-LDL mediated-platelet activation. Five-week-old male Wistar rats were assigned to either control or trained groups. Trained rats were treadmill-trained for 10 weeks after familiarization. The following measurements were taken in both control and trained groups: plasma lipid profile, oxidation of LDL, platelet adhesiveness, aggregability, cGMP contents, plasma and platelet-NO metabolite (nitrite plus nitrate) levels, and urinary 8-iso-prostaglandin F2alpha (8-iso-PG F2alpha) levels. Based on those measurements, major findings in this study can be summarized as follows: 1) the trained group prolonged the lag time of isolated LDL subjected to copper-induced in vitro oxidation significantly longer than the control group; 2) although having higher plasma and platelet derived-NO metabolite levels, the trained group had lower urinary excretion of 8-iso-PGF2alpha than the control group; 3) the trained group had a lower platelet adhesiveness and aggregability and higher platelet derived-NO metabolite and cGMP productions than the control group; 4) the trained group had a lower Ox-LDL-potentiated platelet adhesiveness and aggregability and Ox-LDL-attenuated NO metabolite and cGMP productions in platelet than the control group; and 5) treating the platelet with L-arginine inhibited Ox-LDL-potentiated platelet activation in both control and trained groups. Results in this study demonstrate that amounts of preformed lipid peroxides decrease while NO production (which acts as an antioxidant) is significantly increased after chronic exercise. Moreover, exercise training decreases Ox-LDL-potentiated platelet activation most likely by enhancing platelet-derived NO release and bioactivity.  相似文献   

8.
Recent studies have suggested that IL-12 and IFN-gamma may impair the ability of fed Ag to induce systemic tolerance. Because both of these cytokines can function to directly or indirectly induce inducible NO synthase (iNOS) expression, we have investigated whether the functional expression of iNOS regulates oral tolerance. C57BL/6J wild-type or C57BL/6J NOS2(-/-) mice were gavaged with a single dose of 20 mg of keyhole limpet hemocyanin (KLH), followed by s.c. immunization with KLH/CFA. In the absence of feeding Ag, several parameters of the immune response were more robust in C57BL/6J NOS2(-/-) mice following KLH/CFA immunization, including the magnitude of the delayed-type hypersensitivity response, the proliferative response, and the production of IFN-gamma and IL-2 by Ag-activated draining lymph node cells. These heightened responses in the C57BL/6J NOS2(-/-) mice are still effectively inhibited by feeding KLH. Feeding KLH to the C57BL/6J NOS2(-/-) mice elicited heightened TGF-ss1 production by Ag-activated lymphocytes, as well as augmented total IgG, IgG1, and IgG2a responses to KLH/CFA compared with that seen in Ag-fed wild-type mice. Feeding Ag to the NOS2(-/-) mice suppressed proliferative responses and IFN-gamma production, while increasing IL-4 production and the IgG1/IgG2a ratio even following a booster immunization of KLH/CFA. Administrating L-N:(6)-(1-iminoethyl)-lysine. 2HCl to wild-type mice during the period of Ag feeding reproduced the high TGF-ss1 production seen in Ag-activated lymphocytes from Ag-fed NOS2(-/-) mice. Feeding KLH is followed by transient up-regulation of NOS2 mRNA expression in the Peyer's patches of wild-type mice. Selective inhibition of NOS2 may be a simple way to augment tolerogenic mucosal immune responses.  相似文献   

9.
This study provides evidence for polygenic controls of antisperm antibody levels in inbred male mice immunized with syngenic testis and epididymis. H2-linked and non-H2-linked genes were involved. Mice of H-2d haplotype were high responders, whereas those with H-2k haplotype were nonresponders; however, B10.D2/nSnJ mice (H-2d) were also nonresponders. In vitro fertilization inhibition by antisera correlated positively with the serum antisperm antibody levels, particularly with antibody of the immunoglobulin (Ig) G class. Inheritance of antibody response that inhibited in vitro fertilization (IVF) was an autosomal dominant trait, but this was not apparent for the control of antibody levels per se. Since IVF was inhibited by both IgG and fragment antigen-binding (Fab) isolated from immune sera, but not by immune IgG previously absorbed by sperm or testis, the biologic effect is antigen-specific and probably involved blockade of functional antigenic epitopes. Antisera to testis, caput sperm or cauda sperm were found to inhibit IVF to a similar degree. Inbred strains of mice that produced the highest levels of serum antisperm antibodies that inhibited IVF were A/J, SJL/J, DBA/1J and BALB/cByJ mice, and their antisera immunoprecipitated a common sperm antigen molecule of 35,000 to 40,000 Mr. In contrast, C57BL/6 and C57BL/10 mice produced significant antibody levels that had no effect on IVF, and their sera did not react with the 35,000- to 40,000-Mr peak. Moreover, among BALB/c H-2 congenic mice, only antiserum of responder BALB/cByJ (H-2d) mice immunoprecipitated the 35,000- to 40,000 Mr peak. Thus the 35,000- to 40,000-Mr protein may be of functional significance in the fertilization process.  相似文献   

10.
Murine macrophage oxidation of L-arginine guanidino nitrogen to nitrite/nitrate yields an intermediate effector, possibly nitric oxide, with antimicrobial activity. Total body nitrogen oxidation metabolism (NOM) was measured in vivo by determining the urinary nitrate excretion of mice ingesting a chemically defined nitrite/nitrate-free diet. As reported previously, mycobacterial infection with bacillus Calmétte-Guerin led to a large increase in urinary nitrate excretion. This increase was temporally related to macrophage activation in vivo. The substrate for macrophage nitrogen oxidation metabolism in vitro, L-arginine, was deleted from the diet without ameliorating the urinary nitrate excretion response induced by BCG. This suggested that L-arginine was synthesized endogenously because there are no other known natural substrates for NOM. A competitive inhibitor of NOM, the L-arginine analog, NG-monomethyl-L-arginine was fed to mice in their drinking water. NG-monomethyl-L-arginine ingestion blocked both basal and bacillus Calmétte-Guerin-induced urinary nitrate excretion over a 2-4 week time span. These experimental conditions should prove useful for further investigation on the role of macrophage NOM in host defense against intracellular microorganisms.  相似文献   

11.
It was recently reported that chloramphenicol inhibits existing denitrification enzyme activity in sediments and carbon-starved cultures of "Pseudomonas denitrificans." Therefore, we studied the effect of chloramphenicol on denitrification by Flexibacter canadensis and "P. denitrificans." Production of N(inf2)O from nitrate by F. canadensis cells decreased as the concentration of chloramphenicol was increased, and 10.0 mM chloramphenicol completely inhibited N(inf2)O production. "P. denitrificans" was less sensitive to chloramphenicol, and production of N(inf2)O from nitrate was inhibited by only about 50% even in the presence of 10.0 mM chloramphenicol. These results suggested that inhibition of denitrification enzyme activity depended on the concentration of chloramphenicol. Increasing the concentration of chloramphenicol decreased the rate of production of nitrite from nitrate by F. canadensis cells, and the concentration of chloramphenicol which resulted in 50% inhibition of production of nitrite from nitrate was 2.5 mM. In contrast, the rates of production of nitrite from nitrate by intact cells and cell extracts of "P. denitrificans" were inhibited by only 58 and 54%, respectively, at a chloramphenicol concentration of 10.0 mM. Chloramphenicol caused accumulation of NO from nitrite but not from nitrate and inhibited NO consumption in F. canadensis; however, it had neither effect in "P. denitrificans." Chloramphenicol did not affect N(inf2)O consumption by these organisms. We concluded that chloramphenicol inhibits denitrification at the level of nitrate reduction and, in F. canadensis, also at the level of NO reduction.  相似文献   

12.
Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.  相似文献   

13.
BALB/c mice (H-2d haplotype) produced IL 2 better than C57BL/6 mice (H-2d haplotype). However genetic analysis in F2 generation demonstrated independent segregation of the IL 2 production intensity and H-2 haplotype. Investigation of the IL 2 production intensity in BALB/c, C57BL/6 and their F1 and F2 generation revealed that this was controlled by only one gene.  相似文献   

14.
Li H  Samouilov A  Liu X  Zweier JL 《Biochemistry》2003,42(4):1150-1159
In addition to nitric oxide (NO) generation from specific NO synthases, NO is also formed during anoxia from nitrite reduction, and xanthine oxidase (XO) catalyzes this process. While in tissues and blood high nitrate levels are present, questions remain regarding whether nitrate is also a source of NO and if XO-mediated nitrate reduction can be an important source of NO in biological systems. To characterize the kinetics, magnitude, and mechanism of XO-mediated nitrate reduction under anaerobic conditions, EPR, chemiluminescence NO-analyzer, and NO-electrode studies were performed. Typical XO reducing substrates, xanthine, NADH, and 2,3-dihydroxybenz-aldehyde, triggered nitrate reduction to nitrite and NO. The rate of nitrite production followed Michaelis-Menten kinetics, while NO generation rates increased linearly following the accumulation of nitrite, suggesting stepwise-reduction of nitrate to nitrite then to NO. The molybdenum-binding XO inhibitor, oxypurinol, inhibited both nitrite and NO production, indicating that nitrate reduction occurs at the molybdenum site. At higher xanthine concentrations, partial inhibition was seen, suggesting formation of a substrate-bound reduced enzyme complex with xanthine blocking the molybdenum site. The pH dependence of nitrite and NO formation indicate that XO-mediated nitrate reduction occurs via an acid-catalyzed mechanism. With conditions occurring during ischemia, myocardial xanthine oxidoreductase and nitrate levels were determined to generate up to 20 microM nitrite within 10-20 min that can be further reduced to NO with rates comparable to those of maximally activated NOS. Thus, XOR catalyzed nitrate reduction to nitrite and NO occurs and can be an important source of NO production in ischemic tissues.  相似文献   

15.
Quantitative differences in serum neutralizing-antibody (SNAb) responses to rabies vaccination and survival after a rabies challenge infection between two inbred mice strains, C3H/J and C57BL/6J, were shown to be under genetic control. A 99% confidence limit calculated from the SNAb response titers of 14 C57BL/6J mice resulted in an upper limit for the SNAb response titer of C57BL/6J mice at 50.63. A SNAb titer less than or equal to 50.63 in response to rabies vaccination was assigned the phenotype of hyporesponder, and a SNAb titer greater than 50.63 in response to rabies vaccination was assigned the phenotype of hyperresponder in this study. The hyper-SNAb response to rabies vaccination and the higher frequency of survival after rabies challenge infection behave as Mendelian dominant alleles in F1 hybrids (C3H/J X C57BL/6J) and backcross (BC) (F1 [C3H/J X C57BL/6J] X C57BL/6J) progeny. Both a relatively hyper-SNAb response and a higher frequency of vaccine-inducible survival phenotypes occur in C3H/J mice. On the other hand, both the relatively hypo-SNAb response and a lower frequency of vaccine-inducible survival phenotypes behave as Mendelian recessive alleles and occur in C57BL/6J mice. C3H/J mice are H-2 Kk, and C57BL/6J mice are H-2 Kb. All three phenotypic traits (H-2 type, SNAb response, and survival after rabies challenge infection) segregate as independent (unlinked) monogenic traits in BC progeny (F1 [C3H/J X C57BL/6J] X C57BL/6J). The genetically controlled survival trait is inducible by rabies vaccination, but SNAb response is not a parameter that measures successful vaccine induction of preexposure protection from a rabies challenge infection in the BC progeny. The essential role of vaccination in developing preexposure protection in genetically responsive mice is confirmed, but indicates that in vitro measurements other than SNAb titers need to be developed to identify mice that have failed to achieve preexposure protection by rabies vaccination. This study confirms Lodmell's findings (D. L. Lodmell and B. Chesebro, J. Virol. 50:359-362, 1984; D. L. Lodmell, J. Exp. Med. 157:451-460, 1983) that susceptibility to rabies infection is genetically controlled in some mice strains. Additionally, this study indicates that conventional rabies vaccination even with more potent vaccines may not induce protection from infection in some genetically susceptible individuals.  相似文献   

16.
Tischner R  Planchet E  Kaiser WM 《FEBS letters》2004,576(1-2):151-155
Wild type (WT), and nitrate reductase (NR)- and nitrite-reductase (NiR)-deficient cells of Chlorella sorokiniana were used to characterize nitric oxide (NO) emission. The NO emission from nitrate-grown WT cells was very low in air, increased slightly after addition of nitrite (200 microM), but strongly under anoxia. Importantly, even completely NR-free mutants, as well as cells grown on tungstate, emitted NO when fed with nitrite under anoxia. Therefore, this NO production from nitrite was independent of NR and other molybdenum cofactor enzymes. Cyanide and inhibitors of mitochondrial complex III, myxothiazol or antimycin A, but not salicylhydroxamic acid (inhibitor of alternative oxidase) inhibited NO production by NR-free cells. In contrast, NiR-deficient cells growing on nitrate accumulated nitrite and emitted NO at very high equal rates in air and anoxia. This NO emission was 50% inhibited by salicylhydroxamic acid, indicating that in these cells the alternative oxidase pathway had been induced and reduced nitrite to NO.  相似文献   

17.
Infection of the central nervous system (CNS) with Theiler's murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2(s)) but not in strains such as C57BL/6 (H-2(b)). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2(b/s)), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2(b)-restricted CD8(+) T cell responses than of the H-2(s)-restricted CD8(+) T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.  相似文献   

18.
We recently demonstrated that 17beta-estradiol (E2) enhances killing of Leishmania mexicana in macrophages from both male and female DBA/2 mouse by increasing nitric oxide (NO) production. Here, we analyzed the effect of E2 on leishmanicidal activity and cytokine production by bone marrow-derived macrophages (BMDMs) from male and female C57BL/6 mice in vitro, specifically examining the role of phosphatidylinositol-3-kinase-gamma (PI3Kgamma) in E2-induced parasite killing. Unlike its effect on macrophages from both male and female DBA/2 mice, E2 only increased leishmanicidal activity in macrophages from female C57BL/6 mice, which was evident by a significant reduction in both infection rates and infection levels compared to sham controls. E2-treated BMDMs from female C57BL/6 mice expressed higher levels of interferon-gammaRalpha, and also produced more interleukin (IL)-12, IL-6 and NO than both the sham controls and E2-treated male-derived macrophages. Sham-treated BMDMs from female PI3Kgamma-/- C57BL/6 mice displayed lower infection rates and infection levels compared to sham-treated wild-type (WT) macrophages. However E2, unlike its effect on macrophages from female WT C57BL/6 mice, failed to reduce infection rates and infection levels in BMDMs from female PI3Kgamma-/- mice. Interestingly, E2-treated BMDMs from female C57BL/6 mice produced significant amounts of inflammatory cytokines and NO in levels comparable to those observed in sham-treated PI3Kgamma-deficient macrophages as well as E2-treated macrophages from WT mice. These findings show that E2 exerts a distinct effect on leishmanicidal activity of macrophages from male versus female C57BL/6 mice. In addition, they suggest that PI3Kgamma is not required for E2-induced cytokine and NO production in L. mexicana-infected macrophages from female C57BL/6 mice but it may be involved in parasite clearance from these cells.  相似文献   

19.
Differences in the lymphoproliferative response to Con A of spleen cells allowed one to distinguish a high responder (BALB/c and DBA/2) and low responder (C57BL/6 and CC57BR) mice. BALB/c and DBA/2 mice (H-2d haplotype) produced interleukin 2 better, than C57BL/6 and CC57BR mice (H-2b haplotype). However acceptance of interleukin 2 was better in BALB/c and C57BL/6, than in DBA/2 and CC57BR mice. Summarizing these facts the authors suppose that the differences in interleukin 2 production and acceptance play an important role in the height of lymphoproliferative response.  相似文献   

20.
Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号