首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大分子吸附对低粘切变流场中红细胞取向的影响   总被引:10,自引:0,他引:10  
采用一种在低粘切变流场中,将红细胞变形指数DI,分解为转向指数与小变形指数的新型激光衍射法,比较了有不同分子量右旋糖酐或PVP处理的红细胞与正常对照组红细胞的(DI)or-γ曲线,发现上述两类曲线间存在明显差异,这一事实表明,这种新型激光衍射法有助于分子水平的微观流变学的研究。  相似文献   

2.
Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the relationship between oxidative stress experienced by RBCs and their phospholipid content and shedding. Using 1H-NMR, we demonstrated a higher lactate/pyruvate ratio, an indicator of oxidative stress, in normal RBCs treated with oxidants (t-butylhydroxyperoxide and H2O2) as well as in beta-thalassemic RBCs. Using 31P-NMR, we found 30% more phosphatidylcholine (PC), and unexpectedly, 35% less phosphatidylserine (PS) in the thalassemic RBCs. PS was decreased by treatment with oxidants and increased by anti-oxidants (vitamin C and N-acetyl cysteine); PC showed the opposite behavior. Thalassemic RBCs incubated in phosphate buffered saline produced more PS in the supernatant than normal RBCs. Anti-oxidants reduced the PS in the supernatant while oxidants increased it. Plasma of thalassemic patients contained 2.6-fold and 1.8-fold more PS and PC, respectively, than normal plasma. These results indicate that the decreased PS in RBCs resulted from increased shedding. The nature of the shed PS was studied by purifying and analyzing membranous microparticles from the plasma and RBC supernatants. More PS was found in microparticles purified from thalassemic plasma and RBC supernatants (5.6- and 4.8-fold, respectively) than in their normal counterparts. However, the bulk (80-90%) of the shed PS was not associated with microparticles. The significance of PS shedding for RBC survival needs further clarification.  相似文献   

3.
A computational model of the pulmonary microcirculation is developed and used to examine blood flow from arteriole to venule through a realistically complex alveolar capillary bed. Distributions of flow, hematocrit, and pressure are presented, showing the existence of preferential pathways through the system and of large segment-to-segment differences in all parameters, confirming and extending previous work. Red blood cell (RBC) and neutrophil transit are also analyzed, the latter drawing from previous studies of leukocyte aspiration into micropipettes. Transit time distributions are in good agreement with in vivo experiments, in particular showing that neutrophils are dramatically slowed relative to the flow of RBCs because of the need to contract and elongate to fit through narrower capillaries. Predicted neutrophil transit times depend on how the effective capillary diameter is defined. Transient blockage by a neutrophil can increase the local pressure drop across a segment by 100--300%, leading to temporal variations in flow and pressure as seen by videomicroscopy. All of these effects are modulated by changes in transpulmonary pressure and arteriolar pressure, although RBCs, neutrophils, and rigid microspheres all behave differently.  相似文献   

4.
Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the relationship between oxidative stress experienced by RBCs and their phospholipid content and shedding. Using 1H-NMR, we demonstrated a higher lactate/pyruvate ratio, an indicator of oxidative stress, in normal RBCs treated with oxidants (t-butylhydroxyperoxide and H2O2) as well as in β-thalassemic RBCs. Using 31P-NMR, we found 30% more phosphatidylcholine (PC), and unexpectedly, 35% less phosphatidylserine (PS) in the thalassemic RBCs. PS was decreased by treatment with oxidants and increased by anti-oxidants (vitamin C and N-acetyl cysteine); PC showed the opposite behavior. Thalassemic RBCs incubated in phosphate buffered saline produced more PS in the supernatant than normal RBCs. Anti-oxidants reduced the PS in the supernatant while oxidants increased it. Plasma of thalassemic patients contained 2.6-fold and 1.8-fold more PS and PC, respectively, than normal plasma. These results indicate that the decreased PS in RBCs resulted from increased shedding. The nature of the shed PS was studied by purifying and analyzing membranous microparticles from the plasma and RBC supernatants. More PS was found in microparticles purified from thalassemic plasma and RBC supernatants (5.6- and 4.8-fold, respectively) than in their normal counterparts. However, the bulk (80-90%) of the shed PS was not associated with microparticles. The significance of PS shedding for RBC survival needs further clarification.  相似文献   

5.
The effect of isovolemic hemodilution on the circulation of red blood cells (RBCs) in the cerebrocortical capillary network was studied by intravital videomicroscopy with use of a closed-cranial-window technique in the rat. Velocity and supply rate of RBCs were measured by tracking the movement and counting the number of fluorescently labeled cells. Arterial blood was withdrawn in increments of 2 ml and replaced by serum albumin. Arterial blood pressure was maintained constant with an infusion of methoxamine. Both velocity and supply rate of RBCs increased, by approximately equal amounts, as arterial hematocrit was reduced from 44 to 15%. The maximum increase in RBC velocity was 4.6 and in RBC supply rate was 5.2 times the baseline value. Calculated lineal density of RBC, an index of capillary hematocrit, did not change with hemodilution. The results suggest that RBC flow and oxygen supply in the cerebral capillary network are maintained during isovolemic hemodilution. The "optimal hematocrit" is as low as 15%.  相似文献   

6.
The purpose of this investigation was to study the effect of the presence of red blood cells (RBCs) in the plasma layer near the arteriole wall on nitric oxide (NO) and oxygen (O2) transport. To this end, we extended a coupled NO and O2 diffusion-reaction model in the arteriole, developed by our group, to include the effect of the presence of RBCs in the plasma layer and the effect of convection. Two blood flow velocity profiles (plug and parabolic) were tested. The average hematocrit in the bloodstream was assumed to be constant in the central core and decreasing to zero in the boundary layer next to the endothelial surface layer. The effect of the presence or absence of RBCs near the endothelium was studied while varying the endothelial surface layer and boundary layer thickness. With RBCs present in the boundary layer, the model predicts that 1) NO decreases significantly in the endothelium and vascular wall; 2) there is a very small increase in endothelial and vascular wall Po2; 3) scavenging of NO by hemoglobin decreases with increasing thickness of the boundary layer; 4) the shape of the velocity profile influences both NO and Po2 gradients in the bloodstream; and 5) the presence of RBCs in the boundary layer near the endothelium has a much larger effect on NO than on O2 transport.  相似文献   

7.
Maternal smoking-induced congenital heart and microvascular defects are closely associated with the impaired functioning of the in-utero feto-placental circulation system. Current groundbreaking facts revealed intimate crosstalk between circulating red blood cells (RBCs) and the vascular endothelium. Thus, RBCs have become the protagonists under varied pathological and adverse pro-oxidative cellular stress conditions. We isolated and screened fetal RBCs from the arterial cord blood of neonates, born to non-smoking (RBC-NS) and smoking mothers (RBC-S), assuming that parameters of fetal RBCs are blueprints of conditions experienced in-utero. Using atomic force microscopy and mass spectrometry-based shotgun lipidomics in the RBC-S population we revealed induced membrane stiffness, loss in intrinsic plastic activities and several abnormalities in their membrane-lipid composition, that could consequently result in perturbed hemodynamic flow movements. Altogether, these features are indicative of the outcome of neonatal microvascular complications and suggest unavailability for the potential rescue mechanism in cases of vascular endothelium impairment due to altered membrane integrity and rheological properties.  相似文献   

8.
In this work the effect of sinusoidal 50 Hz, 0.2 mT magnetic fields on the red blood cells (RBCs) and heart functions of Albino rats were investigated. Twenty-four male Albino rats were equally divided into four groups, A, B, C, and D. Animals from groups B were continuously exposed to the magnetic field for 15 days; and groups C and D, for 30 days. Group A was used as control. Animals from group D were kept after exposure to the magnetic field for a period of 45 days for delayed effect studies. The osmotic fragility and shape of RBCs' membrane and hemoglobin (Hb) structure tests were carried out for all groups. The dielectric relaxation of Hb molecules was measured in the frequency range of 0.1-10 MHz and the dielectric increment (Deltaepsilon), relaxation time (tau), molecular radius (r), and Cole-Cole parameter (alpha) were calculated for all groups. The ECG was measured for all animals before and after exposure to the magnetic field. The results indicated that exposure of the animals to 50 Hz, 0.2 mT magnetic fields resulted in the decrease of RBCs membrane elasticity and permeability and changes in the molecular structure of Hb. The ECG of the exposed animals was considerably altered. The data also indicated that there was no sign of repair in the newly generated RBCs structure and the ECG after removing the animals from the magnetic field, which indicates that the blood generating system was severely injured. The injuries in the heart of the animals were attributed to the loss of some physiological functions of the RBCs as a result of exposures of the rats to the magnetic field.  相似文献   

9.
Yang HY  Kwon J  Choi HI  Park SH  Yang U  Park HR  Ren L  Chung KJ  Kim YU  Park BJ  Jeong SH  Lee TH 《Proteomics》2012,12(1):101-112
Peroxiredoxin II (Prdx II, a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Mice lacking Prdx II proteins had heinz bodies in their peripheral blood, and morphologically abnormal cells were detected in the dense red blood cell (RBC) fractions, which contained markedly higher levels of reactive oxygen species (ROS). In this study, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) in Prdx II-/- mice revealed that a variety of RBC proteins were highly oxidized. To identify oxidation-sensitive proteins in Prdx II-/- mice, we performed RBC comparative proteome analysis in membrane and cytosolic fractions by nano-UPLC-MSE shotgun proteomics. We found oxidation-sensitive 54 proteins from 61 peptides containing cysteine oxidation, and analyzed comparative expression pattern in healthy RBCs of Prdx II+/+ mice, healthy RBCs of Prdx II-/- mice, and abnormal RBCs of Prdx II-/- mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cytoskeleton, stress-induced proteins, metabolic enzymes, signal transduction, and transporters. Furthermore, protein networks among identified oxidation-sensitive proteins were analyzed to associate with various diseases. Consequently, we expected that RBC proteome might provide clues to understand redox-imbalanced diseases.  相似文献   

10.
K G Engstr?m 《Biorheology》1989,26(4):711-721
A new filtration device and blood handling technique for the assessment of RBC deformability in small blood samples is described and used to study RBC deformability in adult obese-hyperglycemic ob/ob-mice and normoglycemic controls. The new filtration device was designed to improve the time resolution during RBC incubation. Test and control RBC suspensions were directly filtered from two identical incubation chambers under a constant pressure of 1200 Pa. Nuclepore filters (3 microns) were mounted on top of several standard test tubes into which the filtrate was subsequently collected and weighed. Because the RBCs were resuspended to a very low (0.01%) hematocrit, the average number of RBCs passing each pore was less than 10. Therefore, any detectable difference must reflect the physical properties of RBCs, e.g. shape or viscoelasticity, whereas the role of white blood cells is negligible. When ob/ob-mouse RBCs were studied with the new technique they showed impaired filtrability as compared with control RBCs, both when incubated without glucose and with glucose present at the same concentration as that recorded in the RBC donating mouse.  相似文献   

11.
The endothelial cell barrier is tightly regulated, and disruption or the leaky behavior of the barrier leads to pathology. Disturbance of blood-brain barrier is observed during viral infection, cerebral malaria, and acute hemorrhagic encephalitis. Red blood cells (RBCs) bind to the endothelial cells (ECs) and their affinity towards ECs enhances in the presence of Plasmodium falciparum infection. ECs stimulated with methemoglobin (MetHb; 20 µM) for 1 hour exhibit high levels of cyto-adherence receptors CD36 and ICAM-1 on their cell surface compared with unstimulated cells. These ECs have acquired affinity towards uninfected RBCs in flow at arterial shear stress. SEM analysis indicates that EC–RBC cyto-adherence involved multiple attachment points. Initially, ECs bind single layer of RBCs and the number of RBCs increases over time to give high-order cyto-adherence with more than 30 RBCs adhered to each endothelial cell. The cyto-adherence complexes are stable to high shear stress and can withstand shear stress up to 450 dyne/cm 2. MetHb-treated ECs exhibited high reactive oxygen species level, and preincubation of ECs with antioxidant (NAC or mannitol) abolished the formation of EC–RBC cyto-adherence complexes. In addition, gallic acid (present in red wine) and green tea extract has inhibited the formation of EC–RBC cyto-adherence complex. A better understanding of gallic acid and tea polyphenol targeting pathological cyto-adherence may allow us to develop a better adjuvant therapy for cerebral malaria and other noninfectious diseases.  相似文献   

12.
The motion and deformation of red blood cells (RBCs) flowing in a microchannel were studied using a theoretical model and a novel automated rheoscope. The theoretical model was developed to predict the cells deformation under shear as a function of the cells geometry and mechanical properties. Fluid dynamics and membrane mechanics are incorporated, calculating the traction and deformation in an iterative manner. The model was utilized to evaluate the effect of different biophysical parameters, such as: inner cell viscosity, membrane shear modulus and surface to volume ratio on deformation measurements. The experimental system enables the measurement of individual RBCs velocity and their deformation at defined planes within the microchannel. Good agreement was observed between the simulation results, the rheoscope measurements and published ektacytometry results. The theoretical model results imply that such deformability measuring techniques are weakly influenced by changes in the inner viscosity of the cell or the ambient fluid viscosity. However, these measurements are highly sensitive to RBC shear modulus. The shear modulus, estimated by the model and the rheoscope measurements, falls between the values obtained by micropipette aspiration and laser trapping. The study demonstrates the integration of a theoretical model with a microfabricated device in order to achieve a better understanding of RBC mechanics and their measurement using microfluidic shear assays. The system and the model have the potential of serving as quantitative clinical tools for diagnosing deformability disorders in RBCs.  相似文献   

13.
Once amyloid β peptides (Aβs) of the Alzheimer's disease build up in blood circulation, they are capable of binding to red blood cell (RBC) and inducing hemolysis of RBC. The mechanisms of the interactions between RBC and Aβ are largely unknown; however, it is very important for the therapeutic target of Aβ-induced hemolysis. In the present study, we investigated whether Aβ1–42 interacts with caveolin-1-containing detergent-resistant membranes (DRMs) of RBC and whether the interaction could be modulated by dietary pre-administration of docosahexaenoic acid (DHA). DHA pre-administration to rats inhibited hemolysis by Aβ1–42. This activity was accompanied by increased DHA levels and membrane fluidity and decreased cholesterol level, lipid peroxidation, and reactive oxygen species in the RBCs of the DHA-pretreated rats, suggesting that the antioxidative property of DHA may rescue RBCs from oxidative damage by Aβ1–42. The level of caveolin-1 was augmented in the DRMs of DHA-pretreated rats. Binding between Aβ1–42 and DRMs of RBC significantly increased in DHA-rats. When fluorescently labeled Aβ1–42 (TAMRA-Aβ1–42) was directly infused into the bloodstream, it again occupied the caveolin-1-containing DRMs of the RBCs from the DHA-rats to a greater extent, indicating that circulating Aβs interact with the caveolin-1-rich lipid rafts of DRMs and the interaction is stronger in the DHA-enriched RBCs. The levels of TAMRA-Aβ1–42 also increased in liver DRMs, whereas it decreased in plasma of DHA-pretreated rats. DHA might help clearance of circulating Aβs by increased lipid raft-dependent degradation pathways and implicate to therapies in Alzheimer's disease.  相似文献   

14.
Three bacterial toxoids, CRM 197 (mutagenized diphtheria toxin), tetanus toxoid (formaldehyde-treated tetanus toxin), and PT-9K/129G (double mutant of pertussin toxin) were encapsulated within red blood cells (RBCs) of B6D2F1 and Balb/C mice according to a mild procedure based on hypotonic dialysis-isotonic resealing that yielded undamaged RBCs. The toxoid-loaded RBCs were injected intravenously in order to immunize animals and their effects were compared to those of identical amounts (30-95 micrograms per mouse subdivided into multiple injections) of the corresponding free toxoids injected intravenously in saline. Sera from treated mice were collected and tested for titers of specific antibodies against each of the three antigens and also for titers of neutralizing antibodies, i.e., affording protection from toxic effects induced by the corresponding native toxins. In all experiments, significant seroconversion was observed with both immunization systems. Titers of both specific and neutralizing antibodies against CRM 197 and tetanus toxoid were several-fold higher upon immunization with the RBC-encapsulated toxoids, than with the free toxoids. These differences were not due to qualitatively different recognition patterns of antigenic determinants by the two types of sera. Conversely, intravenous immunization with pertussis toxoid either as RBC-encapsulated or as free antigen elicited a comparably high production of specific and of neutralizing antibodies. These data demonstrate that properly engineered RBCs behave as natural carriers and possibly adjuvants for antigens of vaccinal interest.  相似文献   

15.
This study determined and compared rates and mechanisms of lactate transport in red blood cells (RBCs) of persons with 1) sickle cell disease (HbSS), 2) sickle cell trait (HbAS), and 3) a control group (HbAA). Blood samples were drawn from 30 African-American volunteers (10 HbSS, 10 HbAS, 10 HbAA). Lactate influx into RBCs was measured by using [14C]lactate at six (2, 5, 10, 15, 25, and 40 mM) unlabeled lactate concentrations. The monocarboxylate transporter pathway was blocked by p-chloromercuriphenylsulfonic acid to determine its percent contribution to total lactate influx. Generally, total lactate influx into RBCs from the HbSS group was significantly greater than influx into RBCs from HbAS or HbAA, with no difference between HbAS and HbAA. Faster influx into HbSS RBCs was attributed to increased monocarboxylate transporter activity [increased apparent Vmax (V'max)]. V'max (4.7 +/- 0.6 micromol x ml(-1) x min(-1)) for HbSS RBCs was significantly greater than V'max of HbAS RBCs (2.9 +/- 1.5 micromol x ml(-1) x min(-1)) and HbAA RBCs (2.0 +/- 0.5 micromol x ml(-1) x min(-1)). Km (42.8 +/- 8 mM) for HbSS RBCs was significantly greater than Km (27 +/- 12 mM) for HbAA RBCs. We suspect that elevated erythropoietin levels in response to chronic anemia and/or pharmacological treatment (erythropoietin injections, hydroxyurea ingestion) is the underlying mechanism for increased lactate transport capacity in HbSS RBCs.  相似文献   

16.
BackgroundThe Omega-3 Index [red blood cell (RBC) content of eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA)] is inversely related to risk of cardiovascular disease in humans. In the U.S., the average Omega-3 Index is about 4–6% of RBC fatty acids, whereas in Japan it is 9–10%. The range of physiologically-possible levels for the Omega-3 Index in other mammals is unknown.ObjectiveTo compare the RBC fatty acid composition of a common piscivorous mammal, the bottlenose dolphin (Tursiops truncatus), with that of (U.S.) humans, and to examine the extent to which dietary fatty acid patterns were reflected in RBCs.MethodsRBCs were isolated from routine blood samples collected from 35 healthy dolphins at two display facilities and were analyzed by gas chromatography. For humans, historic, deidentified RBC fatty acid data from our laboratory were used (n=11,329; mean age 58).ResultsThe mean Omega-3 Index of the dolphins was 19.9% compared with 6.0% for humans. EPA levels were 15.3% vs 1.2%, respectively, but DHA levels were virtually identical (4.6% vs 4.8%). Linoleic acid (LNA) levels were much lower in dolphins vs humans (0.5% vs 12.5%) whereas arachidonic acid (ARA) levels were similar (12.3% vs 14.5%). In a subgroup of humans with an Omega-3 Index in the >99.2 percentile, the mean index was similar to that of the dolphins. Based on an analysis of their food, the dolphins consumed about 60 g of EPA+DHA per day as compared to about 0.1 g in humans.ConclusionDolphins have an Omega-3 Index that is (only) 3–4× higher than that of U.S. adults despite their intake of EPA+DHA being about 165× higher (as a percent of kcal). RBC, EPA and LNA levels are relatively more reflective of dietary intakes than are DHA and ARA levels. The mechanisms by which certain fatty acid levels appear to be fixed and others may vary in RBC membranes are unknown.  相似文献   

17.
A new technique is proposed to estimate the shear modulus (mu) and membrane surface viscosity (eta(m)) of red blood cell (RBC). Theoretical formulae for finding these two parameters are first derived based on the force balance on a RBC in a flow field of low viscosity. Different types of Ektacytometry are then used to measure relevant quantities. The obtained values (mu=6.1 x 10(-6)N/m, eta(m)=8.8 x10 (-7)Ns/m for normal RBC) are consistent with those previously found by micropipette technique and in AC electric field. The present technique is, however, much easier to operate and more advantageous in reflecting the average properties of a large quantity of RBCs, and it is much cheaper to be applied in clinical practice than any other method of measuring the two parameters. The sensitivity of the technique is demonstrated by testing RBCs treated with glutaraldehyde of different concentrations. This technique was demonstrated by the flow chamber.  相似文献   

18.
Red blood cells (RBCs) augment hypoxic pulmonary vasoconstriction (HPV) in part by scavenging of nitric oxide (NO) by Hb (Deem S, Swenson ER, Alberts MK, Hedges RG, and Bishop MJ, Am J Respir Crit Care Med 157: 1181-1186, 1998). We studied the contribution of the RBC compartmentalization of Hb to augmentation of HPV and scavenging of NO in isolated perfused rabbit lungs. Lungs were initially perfused with buffer; HPV was provoked by a 5-min challenge with hypoxic gas (inspired O(2) fraction 0.05). Expired NO was measured continuously. Addition of free Hb to the perfusate (0.25 mg/ml) resulted in augmentation of HPV and a fall in expired NO that were similar in magnitude to those associated with a hematocrit of 30% (intracellular Hb of 100 mg/ml). Addition of dextran resulted in a blunting of HPV after free Hb but no change in expired NO. Blunting of HPV by dextran was not prevented by NO synthase inhibition with N(omega)-nitro-L-arginine and/or cyclooxygenase inhibition. RBC ghosts had a mild inhibitory effect on HPV but caused a small reduction in expired NO. In conclusion, the RBC membrane provides a barrier to NO scavenging and augmentation of HPV by Hb. Increased perfusate viscosity inhibits HPV by an undetermined mechanism.  相似文献   

19.
In vivo phagocytosis of senescent red blood cells (RBCs) by macrophages occurs 120 days after their release into the circulation. It depends on two sequential signals that trigger phagocytosis: (1) desialylation of membrane glycoconjugates with the exposure of the penultimate beta-galactosyl residues and (2) exposure of phosphatidylserine in the membrane outer leaflet. Leukodepleted and nonleukodepleted RBCs were compared using flow cytometric procedures to determine whether the in vitro deterioration of RBCs during storage might be attributable to an identical mechanism of desialylation induced by leukocyte neuraminidases, resulting in exposure of beta-galactosyl and subsequently phosphatidylserine residues - signals of senescent RBCs. Without prior leukodepletion, stored RBCs showed an increased population of senescent RBCs (using light scatter measurements), extensive desialylation with the exposure of beta-galactosyl residues (using specific fluorescein isothiocyanate [FITC]-lectins), significant exposure of phosphatidylserine in the outer leaflet of the RBC membrane (using FITC-annexin V), and extensive in vitro phagocytosis (using PKH-26-labeled RBCs). There were minimal changes observed with the leukodepleted RBCs. These results lead to the conclusion that leukocyte enzymes, including neuraminidases, are definitive contributers to the desialylation of RBCs during storage and to the exposure of phosphatidylserine residues. These deleterious effects resulting from highly active leukocyte enzymes are preventable by prior leukodepletion of the stored RBCs. Previously developed flow cytometric procedures to detect in vivo "RBC senescence" have been applied and proved to be reliable criteria to monitor the viability of stored RBCs.  相似文献   

20.
Red blood cell (RBC) filterability in the obese-hyperglycaemic ob/ob-mouse is markedly impaired compared with the lean controls. A new RBC filtration device with improved time resolution was used to study this phenomenon in relation to RBC shape-transformations and the effects of glucose and albumin. In ob/ob-mice, but not in controls, filterability increased with time; however, the difference between the mice remained significant after 2 h. Stomatocytosis (cup shaped RBCs) was in the order of 80-90% in both types of mice and 56% in human blood. The proportion of stomatocytes decreased linearly with time, most rapidly in the ob/ob-mice. Only 1% echinocytes (crenated RBCs) was seen after 2 h of incubation. In the absence of serum albumin stomatocytosis was initially 40% and declined further during incubation. Echinocytes showed the opposite reaction, increasing from about 10% to 55%. Glucose, 20 mM, caused an immediate increase in filterability but had no corresponding effect on the RBC shape transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号