首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic lipid formulations consisting of 3 [N-(N, N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the helper lipid dioleoylphosphatidylethanolamine (DOPE) (1.5:1 molar ratio) were prepared by solvent evaporation and sized by high pressure extrusion. Liposomes made of 1:1 molar ratio 1,2-dioleoyl-3-trimethyl-ammonium-propane (DOTAP)/DOPE were used as controls in the study. The two formulations were characterized and evaluated for their efficiency in transfecting SKnSH (neuroblastoma) and primary rat neuronal cell lines. DC-Chol/DOPE liposomes were more efficient at transfecting both the SKnSH and the primary rat neuronal cells and also less toxic compared to the DOTAP/DOPE liposomes. The cellular-associated signal of rhodamine-labeled DC-Chol/DOPE liposomes into SKnSH and primary rat neuronal cells was higher than the rhodamine-labeled DOTAP/DOPE liposomes. These results demonstrate that DC-Chol/DOPE cationic liposomes provide an efficient vehicle for the delivery of plasmids into SKnSH and primary neuronal cells compared to DOTAP/DOPE liposomes. DC-Chol/DOPE liposomes may provide a good non-viral candidate for transfecting primary rat neuronal cells.  相似文献   

2.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

3.
Cationic liposomes enhanced the rate of transduction of target cells with retroviral vectors. The greatest effect was seen with the formulation DC-Chol/DOPE, which gave a 20-fold increase in initial transduction rate. This allowed an efficiency of transduction after brief exposure of target cells to virus plus liposome that could be achieved only after extensive exposure to virus alone. Enhancement with DC-Chol/DOPE was optimal when stable virion-liposome complexes were preformed. The transduction rate for complexed virus, as for virus used alone or with the polycation Polybrene, showed first-order dependence on virus concentration. Cationic liposomes, but not Polybrene, were able to mediate envelope-independent transduction, but optimal efficiency required envelope-receptor interaction. When virus complexed with DC-Chol/DOPE was used to transduce human mesothelioma xenografts, transduction was enhanced four- to fivefold compared to that for virus alone. Since the efficacy of gene therapy is dependent on the number of cells modified, which is in turn dependent upon the balance between transduction and biological clearance of the vector, the ability of cationic liposomes to form stable complexes with retroviral vectors and enhance their rate of infection is likely to be important for in vivo application.  相似文献   

4.
Here we present a quantitative mechanism-based investigation aimed at comparing the cell uptake, intracellular trafficking, endosomal escape and final fate of lipoplexes and lipid–protamine/deoxyribonucleic acid (DNA) (LPD) nanoparticles (NPs) in living Chinese hamster ovary (CHO) cells. As a model, two lipid formulations were used for comparison. The first formulation is made of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic lipid dioleoylphosphocholine (DOPC), while the second mixture is made of the cationic 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE). Our findings indicate that lipoplexes are efficiently taken up through fluid-phase macropinocytosis, while a less efficient uptake of LPD NPs occurs through a combination of both macropinocytosis and clathrin-dependent pathways. Inside the cell, both lipoplexes and LPD NPs are actively transported towards the cell nucleus, as quantitatively addressed by spatio-temporal image correlation spectroscopy (STICS). For each lipid formulation, LPD NPs escape from endosomes more efficiently than lipoplexes. When cells were treated with DOTAP–DOPC-containing systems the majority of the DNA was trapped in the lysosome compartment, suggesting that extensive lysosomal degradation was the rate-limiting factors in DOTAP–DOPC-mediated transfection. On the other side, escape from endosomes is large for DC-Chol–DOPE-containing systems most likely due to DOPE and cholesterol-like molecules, which are able to destabilize the endosomal membrane. The lipid-dependent and structure-dependent enhancement of transfection activity suggests that DNA is delivered to the nucleus synergistically: the process requires both the membrane-fusogenic activity of the nanocarrier envelope and the employment of lipid species with intrinsic endosomal rupture ability.  相似文献   

5.
Abstract

Cationic liposomes are non-viral gene transfer vectors for in vitro and in vivo experiments. In the present studies, we investigated whether a disulfide linkage in a cationic lipid was reducible by cell lysate resulting in the release of plasmid DNA and enhanced gene transfection. We also investigated if the differences in transgene production were from differences in total amount of cellular associated plasmid DNA. We systematically compared the gene transfection of disulfide bond containing-cationic lipid, 1', 2'-dioleoyl-sn-glycero-3'-succinyl-2-hydroxyethyl disulfide ornithine conjugate (DOGSDSO), its non-disulfide-containing analog, 1', 2'-dioleyl-sn-glycero-3'-succinyl-1, 6-hexanediol ornithine conjugate (DOGSHDO), 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP). Two transgene reporter systems (i.e., luciferase and green fluorescent protein (GFP)) were used to address transgene transgene expression and transgene efficiency. Experiments with the luciferase expression plasmid resulted in transgene activity up to 11 times greater transgene production for the disulfide containing lipid in at least two different cell lines, COS 1 and CHO cells. When transgene expression was determined by GFP activity, DOGSDSO liposomes were four times greater than the non-disulfide lipid or positive control (DOTAP) liposomes. By quantifying nucleic acid uptake by flow cytometry it was also demonstrated that increase expression was not solely from an increase in cellular plasmid DNA accumulation. These results demonstrate that cationic lipids containing a disulfide linkage are a promising method for gene transfer.  相似文献   

6.
7.
BACKGROUND: The first objective of the study was to evaluate the transfection of corneal epithelium with non-viral vectors to secrete transgene products into the tear fluid and aqueous humor. The second goal was to evaluate the differentiated corneal epithelial cell culture for transfection studies. METHODS: The human corneal epithelial (HCE) cell line was cultured to different stages of differentiation and transfected with complexes of pCMV-SEAP2 with DOTAP/DOPE, DOTAP/DOPE/protamine sulfate (PS) and polyethylenimine (PEI). The complexes of DOTAP/DOPE with plasmid (CMV-SEAP2 or pCMV-Luc4) were subsequently applied topically to the rabbit eyes. Secreted alkaline phosphatase (SEAP) was analyzed using chemiluminescent assay. Luciferase (Luc) was detected at the mRNA level in cornea and conjunctiva using a qRT-PCR. RESULTS: The transfection levels decreased with differentiation of HCE cells. PEI was effective in transfecting both the dividing and partly differentiated cells, but ineffective in differentiated cells. DOTAP/DOPE showed high activity in differentiated cell cultures, while added PS did not improve transfection. Significant SEAP expression was observed for three days after in vivo transfection in the tear fluid and aqueous humor. The luciferase mRNA was found both in the cornea and conjunctiva. The rates of SEAP secretion from both the basolateral side of differentiated HCE cells and cornea in vivo were within the same range. CONCLUSIONS: Corneal epithelium can be transfected topically to secrete gene products to the tear fluid and aqueous humor. The differentiated HCE model is a useful tool in the evaluation of non-viral carriers for corneal transfection.  相似文献   

8.
The DNA complexation and condensation properties of two established cationic liposome formulations, CDAN/DOPE (50:50, m/m; Trojene) and DC-Chol/DOPE (60:40, m/m), were investigated by using a combination of isothermal titration calorimetry (ITC), circular dichroism (CD), photon correlation spectroscopy (PCS), and turbidity assays. Plasmid DNA (7528 bp) was titrated with extruded liposomes (90 +/- 15 nm) and a thermodynamic profile established. ITC data revealed that the two liposome formulations differ substantially in their DNA complexation characteristics. Equilibrium dissociation constants for CDAN/DOPE (K(d) = 19 +/- 3 microM) and DC-Chol/DOPE liposomes (K(d) = 2 +/- 0.5 microM) were obtained by fitting the experimental data in a one-site binding model. Both CDAN/DOPE and DC-Chol/DOPE binding events take place with a negative binding enthalpy (DeltaH degrees = -0.5 and -1.7 kcal/mol, respectively) and increasing system entropy (TDeltaS = 6 +/- 0.3 and 6.2 +/- 0.3 kcal/mol, respectively). Interestingly, CDAN/DOPE liposomes undergo substantial rehydration and protonation prior to complexation with pDNA, which is observed as two discrete exothermic signals during titration. No such biphasic effects are seen with respect to the binding between DC-Chol/DOPE and pDNA that appears to be otherwise instantaneous with no rehydration effects. The rehydration and protonation characteristics of CDAN/DOPE liposomes in comparison with those of DC-Chol/DOPE cationic liposomes are confirmed by ITC; CDAN/DOPE liposomes have strongly exothermic dilution characteristics and DC-Chol/DOPE liposomes only mildly endothermic characteristics. Furthermore, analysis of cationic liposome-pDNA binding by CD spectroscopy reveals that CDAN/DOPE-pDNA lipoplexes are more structurally fluid than DC-Chol/DOPE-pDNA lipoplexes. CDAN/DOPE liposomes induced considerable fluctuation in the DNA structure for at least 60 min, whereas liposomes obtained from DC-Chol/DOPE lack the same effect on the DNA structure. Turbidity studies show that DC-Chol/DOPE lipoplexes exhibit greater resistance to serum than CDAN/DOPE lipoplexes, which showed substantial precipitation after incubation for 100 min with serum. Transfection studies on HeLa and Panc-1 cells reveal that CDAN/DOPE lipoplexes are superior in efficacy to DC-Chol/DOPE lipoplexes. CDAN/DOPE liposomes tend to transfect best in normal growth medium (including 10% serum and antibiotics), whereas DC-Chol/DOPE lipoplexes transfect best under serum free transfection conditions.  相似文献   

9.
Efficient gene transfer by transferrin lipoplexes in the presence of serum   总被引:1,自引:0,他引:1  
Cationic lipids are being used increasingly as reagents for gene delivery both in vitro and in vivo. One of the limitations to the application of cationic lipid-DNA complexes (lipoplexes) in vivo is the inhibition of gene delivery by serum. In this study, we have shown that transferrin (Tf)-lipoplexes, which had transferrin adsorbed at their surface via electrostatic interactions, are much more effective than plain lipoplexes in transfecting cells in the presence of relatively high concentrations (up to 60%) of fetal bovine serum (FBS). Serum even enhanced transfection by Tf-lipoplexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP)/dioleoylphosphatidylethanolamine (DOPE)/pCMVLacZ at high lipid/DNA (+/-) charge ratios, and inhibited lipofection for those with low charge ratios when they were added to the cells immediately after the preparation of complexes. The effect of serum on lipofection was dose-dependent. Preincubation of the complexes at 20 degrees C for 6 h led to serum resistance, even for the negatively charged transferrin-lipoplexes. A similar tendency was observed for DOTAP/cholesterol and DOTAP/DOPE/cholesterol liposomes. The percentage of cells transfected, measured by beta-galactosidase expression, also increased with the serum concentration. Cell viability was not affected significantly when the cells were incubated with the complexes for 4 h at 37 degrees C, followed by a 48-h incubation. Our findings extend the scope of previous studies where transferrin-lipoplexes were used to introduce DNA into cells, rendering these complexes and their future derivatives potential alternatives to viral vectors for gene delivery in vivo.  相似文献   

10.
A novel cholesterol-based cationic lipid containing a tri-2- hydroxyethylamine head group and ether linker (Chol- THEA) was synthesized and examined as a potent gene delivery vehicle. In the preparation of cationic liposome, the addition of DOPE as helper lipid significantly increased the transfection efficiency. To find the optimum transfection efficiency, we screened various weight ratios of DOPE and liposome/DNA (N/P). The best transfection efficiency was found at the Chol-THEA:DOPE weight ratio of 1:1 and N/P weight ratio of 10~15. Most of the plasmid DNA was retarded by this liposome at the optimum N/P weight ratio of 10. The transfection efficiency of Chol-THEA liposome was compared with DOTAP, Lipofectamine, and DMRIE-C using the luciferase assay and GFP expression. Chol-THEA liposome with low toxicity had better or similar potency of gene delivery compared with commercial liposomes in COS-7, Huh-7, and MCF-7 cells. Therefore, Chol-THEA could be a useful non-viral vector for gene delivery.  相似文献   

11.
Abstract

A novel lipid/polycation/DNA (LPD) formulation has been developed for in vivo gene transfer. It involves the condensation of plasmid DNA with protamine sulfate, a cationic polypeptide, followed by the addition of DOTAP cationic liposomes. Compared with DOTAP/DNA complex, LPD offers greater protection of plasmid DNA against enzymatic digestion and gives consistently higher gene expression in mice via tail vein injection. The in vivo efficiency of LPD was dependent upon charge ratio and was also affected by the lipid used. Increasing the amount of DNA delivered induced an increase in gene expression. The optimal dose was approximately 50 μg per mouse, at which concentration approximately 10 ng luciferase protein per mg extracted tissue protein could be detected in the lung. Gene expression in the lung was detected as early as 1 h after injection, peaked at 6 h, and declined thereafter. Using LacZ as a reporter gene, it was shown that endothelial cells were the primary locus of transgene expression in both lung and spleen. No sign of inflammation in these organs was noticed. Since protamine sulfate has been proven to be non-toxic and only weakly immunogenic in humans, this novel vector may be useful for the clinical use of gene therapy.  相似文献   

12.
BACKGROUND: Gene transfer to burn wounds could present an alternative to conventional and often insufficient topical and systemic application of therapeutic agents to aid in wound healing. The goals of this study were to assess and optimize the potential of transient non-viral gene delivery to burn wounds. METHODS: HaCaT cells were transfected with luciferase or beta-galactosidase transgene using either pure plasmid DNA (pDNA) or complexed with Lipofectamine 2000, FuGENE6, or DOTAP-Chol. Expression was determined by bioluminescence and fluorescence. Forty male Sprague-Dawley rats received naked pDNA, lipoplexes, or carrier control intradermally into either unburned skin, superficial, partial, or full-thickness scald burn. Animals were sacrificed after 24 h, 48 h, or 7 days, and transgene expression was assessed. RESULTS: Gene transfer to HaCaT cells showed the overall highest expression for DOTAP/Chol (77.85 ng luciferase/mg protein), followed by Lipofectamine 2000 (33.14 ng luciferase/mg protein). pDNA-derived gene transfer to superficial burn wounds showed the highest expression among burn groups (0.77 ng luciferase/mg protein). However, lipoplex-derived gene transfer to superficial burns and unburned skin failed to show higher expression. CONCLUSIONS: Lipofectamine 2000 and DOTAP/Chol lipoplex showed significantly enhanced gene transfer, whereas no transfection was detectable for naked DNA in vitro. In contrast to the in vitro study, naked DNA was the only agent with which gene delivery was successful in experimental burn wounds. These findings highlight the limited predictability of in vitro analysis for gene delivery as a therapeutic approach.  相似文献   

13.
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.  相似文献   

14.
This study was aimed to investigate if and to what extent there is an interplay between lipoplex physicochemical properties and plasmid promoter type affecting transfection efficiency in vitro. To reduce the number of variables only one cell type (NIH3T3 cells), one gene (human growth hormone), one cationic lipid (DOTAP) in a plasmid >85% in supercoiled form, and the same medium conditions were used. The variables of the physicochemical properties included presence and type of helper lipid (DOPE, DOPC, or cholesterol, all in 1:1 mole ratio with DOTAP), size and lamellarity of the liposomes used for lipoplex preparation (large unilamellar vesicles, LUV, versus multilamellar vesicles, MLV), and DNA(-)/cationic lipid(+) charge ratio, all containing the same human growth hormone but differing in their promoter enhancer region. Two of the promoters were of viral origin: (a) SV40 promoter (simian virus early promoter) and (b) CMV promoter (cytomegalovirus early promoter); two were of mammalian cell origin: (c) PABP promoter (human poly(A)-binding protein promoter) and (d) S16 promoter (mouse ribosomal protein (rp) S16 promoter). Transfection studies showed that, irrespective of promoter type, large (> or =500 nm) MLV were superior to approximately 100 nm LUV; the extent of superiority was dependent on liposome lipid composition (larger for 100% DOTAP and DOTAP/DOPE than for DOTAP/DOPC and DOTAP/cholesterol). The optimal DNA(-)/DOTAP(+) charge ratio for all types of lipoplexes used was 0.2 or 0.5 (namely, when the lipoplexes were positively charged). Scoring the six best lipoplex formulations (out of 128 studied) revealed the following order: pCMV (DOTAP/DOPE) > pSV (DOTAP/DOPE)=pCMV(DOTAP/cholesterol)=pS16 (100% DOTAP)=pS16 DOTAP/DOPE > pCMV (DOTAP/DOPC). The lack of trivial consistency in the transfection efficiency score, the pattern of transfection efficiency, and statistical analysis of the data suggest that there is cross-talk between promoter type and lipoplex lipid composition, which may be related to the way the promoter is associated with the lipids.  相似文献   

15.
重组病毒载体系统因为具有高效的基因转移能力得到了广泛应用,而病毒包装细胞的转染是重组病毒制备过程中的关键步骤。优化了脂质体DC-Chol/DOPE介导的转染常用的病毒包装细胞系HEK293FT的实验条件,比较了DC-Chol/DOPE、Lipofectamine2000和磷酸钙共沉淀法转染细胞的效率,并且比较了用DC-Chol/DOPE和磷酸钙共沉淀法转染293FT细胞制备重组腺病毒的结果,发现DC-Chol/DOPE对293FT细胞的转染效率以及最终收获的病毒滴度都远高于磷酸钙共沉淀法转染。所以,利用DC-Chol/DOPE转染293FT细胞制备重组病毒是一种简单、高效、成本低廉的方法。  相似文献   

16.
Context: Cationic lipoplexes are less toxic than viral gene vectors and more convenient to prepare but their efficiencies of gene delivery are generally lower.

Objective: To develop ortho ester-based, pH-sensitive lipoplexes for efficient gene delivery both in cultured cells and in vivo.

Materials and methods: A novel cationic and acid-labile lipid (DOC) containing a cationic headgroup and a cholesterol-derived lipid tail joined together by an acid-labile ortho ester linker was designed and synthesized. DOC was formulated into liposomes with the conical helper lipid DOPE, and then into lipoplexes with plasmid DNA encoding a luciferase reporter gene. The physicochemical properties of the lipoplexes (size, surface charge and pH-sensitivity) were characterized. Gene delivery by DOC/DOPE/DNA lipoplexes was also evaluated in CV-1 cells and in CD-1 mice following intratracheal injection. Lipoplexes consisting of the acid-stable cationic lipid DC-Chol were characterized as a control.

Results: DOC formed cationic lipoplexes with DOPE and DNA. After incubation at acidic pH 4.6, DOC/DOPE/DNA lipoplexes lost their positive charges and aggregated with one another as a result of DOC hydrolysis. Both in CV-1 cell culture and in CD-1 mice, DOC/DOPE/DNA lipoplexes increased the luciferase gene expression by 5- to 10-fold compared with the analogous but acid-stable DC-Chol/DOPE/DNA lipoplexes.

Discussion and conclusion: Incorporation of an acid-labile ortho ester linker into a cationic lipid is a viable approach to enhance gene delivery by the corresponding lipoplexes both in cultured cells and in vivo.  相似文献   


17.
A study related to the development and characterization of a new gene delivery system was performed. The approach consists in both the pre-condensation of plasmid DNA with an arginine-based cationic surfactant, arginine–N-lauroyl amide dihydrochloride (ALA), which was found not to be toxic, and the incorporation of the blood protein transferrin (Tf) into the formulations.Two cationic liposome formulations were used, one composed of a mixture of dioleoyl trimethylammoniopropane and cholesterol (DOTAP:Chol) and the other a pH sensitive formulation constituted of DOTAP, Chol, Dioleoyl phosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS).Particles with different ALA/DNA and cationic lipid/DNA charge ratios were produced and a physicochemical characterization of the systems developed was performed. DNA conformational changes in the presence of ALA were studied by Circular Dichroism (CD) and the ALA binding to DNA was followed by surface tension measurements. Insight into the structure and morphology of the various ALA-complexes (complexes composed of ALA, DNA, Tf and liposomes) was obtained by cryogenic-Transmission Electron Microscopy (cryo-TEM) and the sizes of the ALA-complexes were determined through Photon Correlation Spectroscopy (PCS). We found that the transfection capacity of these systems is directly related with the presence of ALA and the lipidic composition. Complexes based on the pH sensitive liposome formulation present better transfection profiles. The correlation between the inner structure, density and size of the ALA-complexes and their biological activity is discussed. Overall, we demonstrate that the presence of ALA improves the transfection efficiency when conjugated with cationic liposome systems.  相似文献   

18.
Cationic liposomes give rise to stable complexes with DNA molecules (lipoplexes) that are of great interest for gene delivery applications. In particular, liposomes made up by a cationic lipid (DOTAP or DC-Chol) and a zwitterionic lipid (DOPE), produce stable adducts with single and double-stranded DNA oligonucleotides. Formation of these lipoplexes has been further addressed here by circular dichroism spectroscopy (CD) and by other independent biophysical methods. Titration of DNA oligonucleotides with cationic liposomes resulted into significant modifications of their circular dichroic bands. Such spectral modifications were ascribed to progressive DNA condensation and loss of native conformation, as a consequence of the electrostatic interactions taking place between the phosphate groups of DNA and the positively charged head groups of cationic lipids. In all cases, the loss of the CD feature characteristic of the native DNA conformation closely matched the inflection point of Zeta potential profiles. The resulting adducts showed peculiar and non-canonical CD spectra, while exhibiting appreciable stability at physiological pH.  相似文献   

19.
A study related to the development and characterization of a new gene delivery system was performed. The approach consists in both the pre-condensation of plasmid DNA with an arginine-based cationic surfactant, arginine-N-lauroyl amide dihydrochloride (ALA), which was found not to be toxic, and the incorporation of the blood protein transferrin (Tf) into the formulations.Two cationic liposome formulations were used, one composed of a mixture of dioleoyl trimethylammoniopropane and cholesterol (DOTAP:Chol) and the other a pH sensitive formulation constituted of DOTAP, Chol, Dioleoyl phosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS).Particles with different ALA/DNA and cationic lipid/DNA charge ratios were produced and a physicochemical characterization of the systems developed was performed. DNA conformational changes in the presence of ALA were studied by Circular Dichroism (CD) and the ALA binding to DNA was followed by surface tension measurements. Insight into the structure and morphology of the various ALA-complexes (complexes composed of ALA, DNA, Tf and liposomes) was obtained by cryogenic-Transmission Electron Microscopy (cryo-TEM) and the sizes of the ALA-complexes were determined through Photon Correlation Spectroscopy (PCS). We found that the transfection capacity of these systems is directly related with the presence of ALA and the lipidic composition. Complexes based on the pH sensitive liposome formulation present better transfection profiles. The correlation between the inner structure, density and size of the ALA-complexes and their biological activity is discussed. Overall, we demonstrate that the presence of ALA improves the transfection efficiency when conjugated with cationic liposome systems.  相似文献   

20.
The combination of cationic lipids with cationic peptides and DNA vectors can produce synergistic effects in gene delivery to eukaryotic cells. Binary complexes of cationic lipids with DNA are well-studied whereas little information is available about the structure of the ternary lipid/peptide/DNA (LPD) complexes and mechanisms defining DNA protection and delivery. Here we use synchrotron small angle X-ray scattering and dynamic light scattering zeta-potential measurements to determine structure and the net charge of supramolecular aggregates of complexes in mixtures of plasmid DNA, cationic liposomes formed from DOTAP, plus a linear cationic ε-oligolysine with the pendant α-amino acids Leu-Tyr-Arg (LYR), ε-(LYR)K10. These ternary complexes display multilamellar structures with relatively constant separation between DOTAP bilayers, accommodating a hydrated monolayer of parallel DNA rods. The DNA-DNA distance in the complexes varies as a function of the net positive to negative (lipid+peptide)/DNA charge ratio. An explanation for the observed dependence of DNA-DNA distance on charge ratio was proposed based on general polyelectrolyte properties of non-stoichiometric polycation-DNA mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号