首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanococcus maripaludis and Methanocaldococcus jannaschii produce cysteine for protein synthesis using a tRNA-dependent pathway. These methanogens charge tRNA(Cys) with l-phosphoserine, which is also an intermediate in the predicted pathways for serine and cystathionine biosynthesis. To establish the mode of phosphoserine production in Methanococcales, cell extracts of M. maripaludis were shown to have phosphoglycerate dehydrogenase and phosphoserine aminotransferase activities. The heterologously expressed and purified phosphoglycerate dehydrogenase from M. maripaludis had enzymological properties similar to those of its bacterial homologs but was poorly inhibited by serine. While bacterial enzymes are inhibited by micromolar concentrations of serine bound to an allosteric site, the low sensitivity of the archaeal protein to serine is consistent with phosphoserine's position as a branch point in several pathways. A broad-specificity class V aspartate aminotransferase from M. jannaschii converted the phosphohydroxypyruvate product to phosphoserine. This enzyme catalyzed the transamination of aspartate, glutamate, phosphoserine, alanine, and cysteate. The M. maripaludis homolog complemented a serC mutation in the Escherichia coli phosphoserine aminotransferase. All methanogenic archaea apparently share this pathway, providing sufficient phosphoserine for the tRNA-dependent cysteine biosynthetic pathway.  相似文献   

2.
Biosynthesis of amino acids in Clostridium pasteurianum   总被引:4,自引:3,他引:1  
1. Clostridium pasteurianum was grown on a synthetic medium with the following carbon sources: (a) (14)C-labelled glucose, alone or with unlabelled aspartate or glutamate, or (b) unlabelled glucose plus (14)C-labelled aspartate, glutamate, threonine, serine or glycine. The incorporation of (14)C into the amino acids of the cell protein was examined. 2. In both series of experiments carbon from exogenous glutamate was incorporated into proline and arginine; carbon from aspartate was incorporated into glutamate, proline, arginine, lysine, methionine, threonine, isoleucine, glycine and serine. Incorporations from the other exogenous amino acids indicated the metabolic sequence: aspartate --> threonine --> glycine right harpoon over left harpoon serine. 3. The following activities were demonstrated in cell-free extracts of the organism: (a) the formation of aspartate by carboxylation of phosphoenolpyruvate or pyruvate, followed by transamination; (b) the individual reactions of the tricarboxylic acid route to 2-oxoglutarate from oxaloacetate; glutamate dehydrogenase was not detected; (c) the conversion of aspartate into threonine via homoserine; (d) the conversion of threonine into glycine by a constitutive threonine aldolase; (e) serine transaminase, phosphoserine transaminase, glycerate dehydrogenase and phosphoglycerate dehydrogenase. This last activity was abnormally high. 4. The combined evidence indicates that in C. pasteurianum the biosynthetic role of aspartate and glutamate is generally similar to that in aerobic and facultatively aerobic organisms, but that glycine is synthesized from glucose via aspartate and threonine.  相似文献   

3.
The pathway of serine synthesis was investigated in six species of cyanobacteria: Anabaena cylindrica, A. variabilis, A. flos-aquae, Coccochloris peniocystis, Gleo-capsa alpicola and Phormidium molle . Activity of the enzymes phosphoglycerate (PGA) dehydrogenase (EC 1.1.1.95), phosphoserine transaminase (EC 2.6.1.52) and phosphoserine phosphatase (EC 3.1.3.3) was detected in vitro in all species, but no PGA phosphatase (EC 3.1.3.20) or hydroxypyruvate reductase (EC 1.1.1.26) activity could be detected. Metabolism of [1-14C]PGA by cell-free extracts of C. peniocystis resulted in the labelling of serine, alanine and aspartate, which represented 84, 11 and 4% of the labelled amino acid pool, respectively, Labelled serine isolated from these experiments was 100% carboxyl-labelled indicating that it was formed directly from PGA. The labelling of serine was markedly reduced by 5 mM phosphoserine. These in vitro findings indicate that cyanobacteria are capable of synthesizing serine directly from PGA, independent of ribulose-1.5-bisphosphate oxidation, and that the route of serine synthesis via phosphohydroxypyruvate and phosphoserine is the predominant pathway in these organisms.  相似文献   

4.
Peptostreptococcus elsdenii, a strict anaerobe from the rumen, was grown on a medium containing yeast extract and [1-(14)C]- or [2-(14)C]-lactate. Radioisotope from lactate was found in all cell fractions, but mainly in the protein. The label in the protein fraction was largely confined to a few amino acids: alanine, serine, aspartic acid, glutamic acid and diaminopimelic acid. The alanine, serine, aspartic acid and glutamic acid were separated, purified and degraded to establish the distribution of (14)C from lactate within the amino acid molecules. The labelling patterns in alanine and serine suggested their formation from lactate without cleavage of the carbon chain. The pattern in aspartic acid suggested formation by condensation of a C(3) unit derived directly from lactate with a C(1) unit, probably carbon dioxide. The distribution in glutamic acid was consistent with two possible pathways of formation: (a) by the reactions of the tricarboxylic acid cycle leading from oxaloacetate to 2-oxoglutarate, followed by transamination; (b) by a pathway involving the reaction sequence 2 acetyl-CoA-->crotonyl-CoA-->glutaconate-->glutamate.  相似文献   

5.
Abstract: Primary cultures of cerebral cortical astrocytes were incubated with [U-13C]glutamate (0.5 m M ) in modified Dulbecco's medium for 2 h. Perchloric acid (PCA) extracts of the cells as well as redissolved lyophilized media were subjected to NMR spectroscopy to identify 13C-labeled metabolites. NMR spectra of the PCA extracts exhibited distinct multiplets for glutamate, aspartate, glutamine, and malate. The culture medium showed peaks for a multitude of compounds released from the astrocytes, among which lactate, glutamine, alanine, and citrate were readily identifiable. For the first time incorporation of label into lactate from glutamate was clearly demonstrated by doublet formation in the C-3 position and two doublets in the C-2 position of lactate. This labeling pattern can only occur by incorporation from glutamate, because natural abundance will only produce singlets in proton-decoupled 13C spectra. Glutamine, released into the medium, was labeled uniformly to a large extent, but the C-3 position not only showed the expected apparent triplet but also a doublet due to 13C incorporation into the C-4 position of glutamine. The doublet accounted for 11% of the total label in the glutamine synthesized and released within the incubation period. The corresponding labeling pattern of [13C]glutamate in the PCA extracts showed that 19% of the glutamate contained 12C. Labeling of lactate, citrate, malate, and aspartate as well as incorporation of 12C into uniformly labeled glutamate and glutamine could only arise via the tricarboxylic acid cycle. The relative amount of glutamate metabolized via this route is at least 70% as calculated from the areas of the C-3 resonances of these compounds. Only a maximum of 30% was converted to glutamine directly.  相似文献   

6.
Glucose and ammonia production were examined in kidney tubules isolated from suckling and early-weaned lambs, on days 10-30 after birth, with abrupt weaning occurring at day 14. There were no differences in the rates of glucose or ammonia production for a given substrate by tubules isolated from any of the lambs, regardless of age or stage of weaning. The preferred substrates for gluconeogenesis were glycerol = lactate greater than propionate = pyruvate = fructose = proline greater than alanine greater than glutamate greater than glutamine greater than aspartate greater than glycine greater than serine, and for ammoniagenesis were glutamine much greater than alanine greater than aspartate much greater than serine greater than glycine = glutamate = proline.  相似文献   

7.
1. Mitochondrial and supernatant aspartate transaminases (EC 2.6.1.1) and supernatant alanine transaminase (EC 2.6.1.2) were purified 89-, 204- and 240-fold respectively, from dolphin muscle. Starch-gel electrophoresis of crude and purified preparations revealed that all three enzymes exist as single forms. 2. K(m) values of alpha-oxoglutarate, alanine, pyruvate and glutamate for the alanine transaminase were 0.45, 8.2, 0.87 and 15mm respectively. For the aspartate transaminases, the K(m) values of alpha-oxoglutarate, aspartate, oxalacetate and glutamate were 0.76, 0.50, 0.10 and 9.4mm respectively, for the mitochondrial form and 0.13, 2.4, 0.06 and 3.2mm respectively, for the supernatant form. 3. In all cases, as the assay pH value was decreased from pH7.3, the K(m) values of the alpha-oxo acids decreased whereas those of the amino acids increased. 4. The apparent equilibrium constants for the aspartate transaminases were independent of pH. These values were 9.2 and 6.8 for the mitochondrial and supernatant forms respectively, where [Formula: see text] 5. Studies of the inhibition of the aspartate transaminases by dicarboxylic acids indicated that these enzymes may be controlled by pools of metabolic intermediates. 6. Three key roles are suggested for the transaminases in the energy metabolism of the diving animal. First, it is believed that a combined action of the transaminases could enhance energy production during hypoxia by providing (a) fumarate from aspartate for the ATP-producing reversal of succinate dehydrogenase, and (b) alpha-oxoglutarate from glutamate for the GTP-producing succinyl thiokinase reaction. Secondly, diving mammals probably accumulate more NADH than other mammals during hypoxia. The aspartate transaminases seem particularly well suited for restoring and maintaining redox balance via the malate-aspartate cycle after aerobic metabolism is resumed. Finally, since the preferred fuel for aerobic work is fat, the combined reactions of the transaminases could be instrumental in providing increased supplies of oxaloacetate for sparking the tricarboxylic acid cycle.  相似文献   

8.
Serine Biosynthesis in Desulfovibrio desulfuricans   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extracts of Desulfovibrio desulfuricans possess enzymes which catalyze the synthesis of serine from 3-phosphoglycerate via the intermediates phosphohydroxypyruvate and phosphoserine.  相似文献   

9.
Two strains of Cyanidium caldarium which possess different biochemical and nutritional characteristics were examined with respect to their ability to utilize amino acids or 2-ketoglutarate as substrates.One strain utilizes alanine, glutamate or aspartate as nitrogen sources, and glutamate, alanine or 2-ketoglutarate as carbon and energy sources for growth in the dark. The growth rate in the dark on 2-ketoglutarate is almost twice as high or higher than that on glutamate or alanine. During growth or incubation of this alga on amino acids, large amounts of ammonia are formed; however, ammonia formation is strongly inhibited by 2-ketoglutarate. The capacity of the alga to form ammonia from amino acids is inducible and develops fully only when the cells are grown or incubated in the presence of glutamate.By contrast, the other strain of Cyanidium caldarium cannot utilize alanine or aspartate as nitrogen sources. It utilizes glutamate only very poorly and does not excrete ammonia into the external medium. This strain is unable to utilize amino acids or 2-ketoglutarate as carbon and energy sources for heterotrophic growth.Cell-free extracts were tested for the occurrence of enzymes which could account for amino acid metabolism and ammonia formation.  相似文献   

10.
1. Isolated hepatocytes were used to establish the reasons for the accumulation of aspartate, previously observed when the isolated rat liver was perfused with ethanol in the presence of alanine or ammonium lactate. 2. The isolated cells did not form aspartate when incubated with alanine and ethanol, but much aspartate was formed on incubation with ammonium lactate and ethanol. 3. Urea was the main nitrogenous product on incubation with alanine, in contrast with the perfused liver, where major quantities of NH4+ are also formed. When the formation of urea was nullified by the addition of urease, alanine plus ethanol caused aspartate formation, indicating that aspartate formation depends on the presence of critical concentrations of NH4+. 4. The accumulated aspartate was present in the cytosol. Ethanol halved the content of 2-oxoglutarate in the cytosol and more than trebled that of glutamate in the mitochondria. 5. The findings support the assumption that 2-oxoglutarate formed by the mitochondrial aspartate aminotransferase is not translocated to the cytosol in the presence of ethanol and NH4+, because it is rapidly converted into glutamate, the dehydrogenation of ethanol providing the required NADH. Aspartate, however, is translocated to the cytosol and accumulates there because of the lack of stoicheiometric amounts of oxoglutarate.  相似文献   

11.
Acetate assimilation pathway of Methanosarcina barkeri.   总被引:18,自引:11,他引:7       下载免费PDF全文
The pathway of acetate assimilation in Methanosarcina barkeri was determined from analysis of the position of label in alanine, aspartate, and glutamate formed in cells grown in the presence of [14C]acetate and by measurement of enzyme activities in cell extracts. The specific radioactivity of glutamate from cells grown on [1-14C]- or [2-14C]acetate was approximately twice that of aspartate. The methyl and carboxyl carbons of acetate were incorporated into aspartate and glutamate to similar extents. Degradation studies revealed that acetate was not significantly incorporated into the C1 of alanine, C1 or C4 of aspartate, or C1 of glutamate. The C5 of glutamate, however, was partially derived from the carboxyl carbon of acetate. Cell extracts were found to contain the following enzyme activities, in nanomoles per minute per milligram of protein at 37 degrees C: F420-linked pyruvate synthase, 170; citrate synthase, 0.7; aconitase, 55; oxidized nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, 75; and oxidized nicotinamide adenine dinucleotide-linked malate dehydrogenase, 76. The results indicate that M. barkeri assimilates acetate into alanine and aspartate via pyruvate and oxaloacetate and into glutamate via citrate, isocitrate, and alpha-ketoglutarate. The data reveal differences in the metabolism of M. barkeri and Methanobacterium thermoautotrophicum and similarities in the assimilation of acetate between M. barkeri and other anaerobic bacteria, such as Clostridium kluyveri.  相似文献   

12.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to identify metabolites excreted by Angiostrongylus cantonensis eggs which had been maintained aerobically in the presence of D-[13C6] glucose. Using 13C-NMR we proved that lactate, acetate and alanine originated from glucose present in the medium via glycolysis. Aminooxyacetate, an inhibitor of alanine transferase, inhibited simultaneously alanine production and the ability to take up glutamate, aspartate and valine from the medium. In addition, we demonstrated that these amino acids can serve as amino group donors of the pyruvate to alanine transamination system in the eggs.  相似文献   

13.
Amino acid fermentation and hydrogen transfer in mixed cultures   总被引:2,自引:0,他引:2  
Abstract The degradation of the following amino acids was investigated in mixed cultures obtained from a waste water purification plant: aspartate, glutamate, serine, alanine, valine and leucine. Inhibition of sulfate-reducing bacteria in these mixed cultures by molybdate was found to inhibit amino acid degradation. The degradation of serine, alanine, valine and leucine was accelerated considerably by active sulfate reduction. The fermentation of aspartate and glutamate was not stimulated by the presence of sulfate-reducing bacteria. The existence of species which are able to ferment valine and leucine by coupling their oxidation to the reduction of exogenous acetate to butyrate was demonstrated.  相似文献   

14.
Metabolites present in acid extracts of mammalian tissues were desalted by passing the extracts through AG11A8 ion-retardation resin. Quantitative recoverles of alanine, aspartate, glucose, glutamate, glutamine, lactate, leucine, and maltose were 95, 100, 92, 85, 96, 90, 97, and 100%, respectively. Effective desalting allows metabolites present in tissue extracts to be separated by two-dimenslonal paper chromatography.  相似文献   

15.
Nonoxidative Pentose Phosphate Pathway in Veillonella alcalescens   总被引:2,自引:2,他引:0       下载免费PDF全文
Crude cell-free extracts of Veillonella alcalescens C1, an anaerobe unable to ferment glucose, were assayed for individual enzymes of the pentose phosphate pathway. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were not detectable. Constituent enzymes of the nonoxidative limb of the pentose phosphate pathway were demonstrable. The presence of transaldolase, transketolase, phosphoribose isomerase, and phosphoribulose epimerase in this organism suggests a primarily biosynthetic role for these enzymes. It is postulated that ribose is synthesized from lactate in V. alcalescens C1 via a modified reversal of glycolysis and the nonoxidative limb of the pentose phosphate pathway.  相似文献   

16.
Daubner SC  Fitzpatrick PF 《Biochemistry》1999,38(14):4448-4454
The active site of tyrosine hydroxylase consists of a hydrophobic cleft with an iron atom near the bottom. Within the cleft are several charged residues which are conserved across the family of pterin-dependent hydroxylases. We have studied four of these residues, glutamates 326 and 332, aspartate 328, and arginine 316 in tyrosine hydroxylase, by site-directed substitution with alternate amino acid residues. Replacement of arginine 316 with lysine results in a protein with a Ktyr value that is at least 400-fold greater and a V/Ktyr value that is 4000-fold lower than those found in the wild-type enzyme; substitution with alanine, serine, or glutamine yields insoluble enzyme. Arginine 316 is therefore critical for the binding of tyrosine. Replacement of glutamate 326 with alanine has no effect on the KM value for tyrosine and results in a 2-fold increase in the KM value for tetrahydropterin. The Vmax for DOPA production is reduced 9-fold, and the Vmax for dihydropterin formation is reduced 4-fold. These data suggest that glutamate 326 is not directly involved in catalysis. Replacement of aspartate 328 with serine results in a 26-fold higher KM value for tyrosine, a 8-fold lower Vmax for dihydropterin formation, and a 13-fold lower Vmax for DOPA formation. These data suggest that aspartate 328 has a role in tyrosine binding. Replacement of glutamate 332 with alanine results in a 10-fold higher KM value for 6-methyltetrahydropterin with no change in the KM value for tyrosine, a 125-fold lower Vmax for DOPA formation, and an only 3.3-fold lower Vmax for tetrahydropterin oxidation. These data suggest that glutamate 332 is required for productive tetrahydropterin binding.  相似文献   

17.
Kinetic and biochemical parameters of nitrogen-13 flux from L-[13N]glutamate in myocardium were examined. Tissue radioactivity kinetics and chemical analyses were determined after bolus injection of L-[13N]glutamate into isolated arterially perfused interventricular septa under various metabolic states, which included addition of lactate, pyruvate, aminooxyacetate (a transaminase inhibitor), or a combination of aminooxyacetate and pyruvate to the standard perfusate containing insulin and glucose. Chemical analysis of tissue and effluent at 6 min allowed determination of the composition of the slow third kinetic component of the time-activity curves. 13N-labeled aspartate, alanine and glutamate accounted for more than 80% of the tissue nitrogen-13 under the experimental conditions used. Specific activities for these amino acids were constant, but not identical to each other, from 6 through 15 min after administration of L-[13N]glutamate. Little labeled ammonia (1.9%) and glutamine (4.7%) were produced, indicating limited accessibility of exogenous glutamate to catabolic mitochondrial glutamate dehydrogenase and glutamine synthetase, under control conditions. Lactate and pyruvate additions did not affect tissue amino acid specific activities. Aminooxyacetate suppressed formation of 13N-labeled alanine and aspartate and increased production of L-[13N]glutamine and [13N]ammonia. Formation of [13N]ammonia was, however, substantially decreased when aminooxyacetate was used in the presence of exogenous pyruvate. The data support a model for glutamate compartmentation in myocardium not affected by increasing the velocity of enzymatic reactions through increased substrate (i.e., lactate or pyruvate) concentrations but which can be altered by competitive inhibition of transaminases (via aminooxyacetate) making exogenous glutamate more available to other compartments.  相似文献   

18.
Glutamate and aspartate showed the highest rate of catabolism in oxygenated isolated rat heart with the formation of glutamine, asparagine and alanine. Under anoxia, the catabolism of branch chained amino acids and that of lysine, proline, arginine and methionine was inhibited. However, glutamate and aspartate catabolized at a higher rate as compared with oxygenation. Alanine was the product of their excessive degradation. During oxygenation, 70% of ammonia were produced via deamination of amino acids. Under anaerobic conditions the participation of amino acids in ammoniagenesis decreased to 4%; the principal source of ammonia was the adenine nucleotide pool. The total pool of the tricarboxylic acid cycle intermediates increased 2.5-fold due to accumulation of succinate. The data obtained suggest that the constant influx of intermediates into the cycle from amino acids is supported by coupled transamination of glutamate and aspartate. This leads to the formation of ATP and GTP in the tricarboxylic acid cycle during blocking of aerobic energy production.  相似文献   

19.
Turnover rates of amino acid neurotransmitters in regions of rat cerebellum   总被引:1,自引:0,他引:1  
The turnover rates of aspartate, gamma-aminobutyric acid (GABA), glutamate, glutamine, alanine, serine, and glycine were measured in five regions of rat cerebellum. Turnover rates of the putative neurotransmitters (aspartate, glutamate, and GABA) were 2-20-fold higher than those of alanine and serine, and generally consistent with the proposed neurotransmitter functions for these amino acids. However, glutamate turnover was high and similar in magnitude in the deep nuclei and granule layer, suggesting possible release, not only from parallel fibers, but from mossy fibers as well. The differential distribution of turnover rates for GABA supports its neuronal release by Purkinje, stellate, basket, and Golgi cells, whereas aspartate may be released by both climbing and mossy fibers. The distribution of glycine turnover rates is consistent with release from Golgi cells, whereas alanine may be released from granule cell parallel fibers. Turnover rates measured in two other motor areas, the striatum and motor cortex, indicated that utilization of these amino acid neurotransmitters is differentially distributed in brain motor regions. The data indicate that turnover rate measurements may be useful in identifying neurotransmitter function where content measurements alone are insufficient.  相似文献   

20.
Muscle branched-chain amino acid metabolism is coupled to alanine formation via branched-chain amino acid aminotransferase and alanine aminotransferase, but the subcellular distributions of these and other associated enzymes are uncertain. Recovery of branched-chain aminotransferase in the cytosol fraction after differential centrifugation was shown to be accompanied by leakage of mitochondrial-matrix marker enzymes. By using a differential fractional extraction procedure, most of the branched-chain aminotransferase activity in rat muscle was located in the mitochondrial compartment, whereas alanine aminotransferase was predominantly in the cytosolic compartment. Phosphoenolpyruvate carboxykinase, like aspartate aminotransferase, was approximately equally distributed between these subcellular compartments. This arrangement necessitates a transfer of branched-chain amino nitrogen and carbon from the mitochondria to the cytosol for alanine synthesis de novo to occur. In incubations of hemidiaphragms from 48 h-starved rats with 3mM-valine or 3mM-glutamate, the stimulation of alanine release was inhibited by 69% by 1 mM-aminomethoxybut-3-enoate, a selective inhibitor of aspartate aminotransferase. Leucine-stimulated alanine release was unaffected. These data implicate aspartate aminotransferase in the transfer of amino acid carbon and nitrogen from the mitochondria to the cytosol, and suggest that oxaloacetate, via phosphoenolpyruvate carboxykinase, can serve as an intermediate on the route of pyruvate formation for muscle alanine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号