首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic staging tables provide information to standardize embryological investigations and to subsidize discussions about evolution. We have established a developmental staging table for Iguana iguana iguana. The sample was composed of 142 embryos, incubated at a constant temperature and collected at regular intervals. Morphological features as pharyngeal arches, craniofacial structures, eyes, limbs, claws, pigmentation, scales and egg tooth were evaluated to determine development stages. The normal staging table includes 17 stages from oviposition to hatching, based on chronology and morphological external features. Stages from 1 to 27 occur before oviposition. Stage 28 was the first described, because all embryos presented limb bud anlage, key feature of the previous stage. We used pharyngeal arches and limb buds to describe the first stages; claws, genital papilla and scales to describe the middle stages; and pigmentation, size and egg tooth to describe the last stages. Incubation lasted approximately 2 months in a controlled environment. The results were similar to the data from other lizards, confirming the embryonic conservative pattern of the group.  相似文献   

2.
The developmental mechanisms of color patterns formation and its evolution remain unclear in reptilian sauropsids. We, therefore, studied the pigment cell mechanisms of stripe pattern formation during embryonic development of the snake Elaphe quadrivirgata. We identified 10 post‐ovipositional embryonic developmental stages based on external morphological characteristics. Examination for the temporal changes in differentiation, distribution, and density of pigment cells during embryonic development revealed that melanophores first appeared in myotome and body cavity but not in skin surface at Stage 5. Epidermal melanophores were first recognized at Stage 7, and dermal melanophores and iridophores appeared in Stage 9. Stripe pattern first appeared to establish at Stage 8 as a spatial density gradient of epidermal melanophores between the regions of future dark brown longitudinal stripes and light colored background. Our study, thus, provides a comprehensive pigment‐cell‐based understanding of stripe pattern formation during embryonic development. We briefly discuss the importance of the gene expression studies by considering the biologically relevant theoretical models with standard developmental staging for understanding reptilian color pattern evolution.  相似文献   

3.
The Neotropical hinged-tooth, coral snake mimics of the genus Scaphiodontophis are characterized by extremely long and disproportionately thick tails that are extremely fragile. Both the coloration and tail structure are putative antipredator devices. While all examples have components of the coloration that match those of the venomous coral snakes (family Elapidae), the range of variation is extreme, leading to controversy on the status of various populations, including nine named taxa. Individual, ontogenetic and geographic variation in scutellation and head, body and tail coloration were analysed to evaluate population status and possible evolutionary trends based on a sample of 183 examples from Mexico, Central America and Colombia. Variation in subcaudal counts show population differences (higher in Mexico and upper Central America) but are not congruent with geographic variation in coloration. Generally snakes from north of Nicaragua and from central and eastern Panama have a pattern of dyads (black-light-black bands separating red bands), those from Atlantic slope Nicaragua to western Panama a pattern of monads (light-black-light bands separating the red ones) and those from Colombia have both pattern types on the same snake. The dyads and/or monads may be present the length of the body and tail, restricted to the anterior part of the body or on the entire body or on the anterior part of the body and on the tail. Two or more of these variants may occur at a single geographic locality or only a single one may be present. Head and nuchal colour patterns (Z, A, V and Du) are relatively consistent geographically. The Adantic slope Guatemala, Belize and Honduras population have the A pattern, those of Nicaragua, Costa Rica and western Panama the V pattern, and those in Colombia a Du pattern. Other populations have the Z coloration. Intermediate conditions in coloration of the body and tail and head and neck are found at localities intermediate between the main pattern types, indicating intergradation among adjacent populations. Consequently, we regard these snakes as representative of a single species, Scaphiodontophis annulatus Dumeril and Bibron and the eight other names applied to various populations and individuals as synonyms. Analysis of colour pattern leads us to the conclusion that the tricolour pattern evolved from a uniform one through a lineate-spotted condition (usually present on the non-tricolour portions of the snake) through a bicolour red and black pattern to the dyadal condition. The monadal pattern in turn was derived from the dyadal one. The data further indicates that tricolour components first appeared anteriorly and progressively expanded posteriorly. The evolutionary sequence for the head and nuchal pattern appears to be A → Z → V → Du S. annulatus has a series of jaw and tooth specializations designed for rapid processing of hard-bodied prey found during diurnal foraging in the leaf-litter. Urotomy in this species involves intervertebral tail-breakage (pseudoautotomy) without regeneration. Evidence is presented supporting the long-tail multiple break hypothesis as applicable to Scaphiodontophis and other snakes with similar tail morphology (specialized pseudoautotomy). This is in contrast to snakes with similar tail morphology (specialized pseudoautotomy). This is in contrast to Coniophanes and other snakes with a high incidence of urotomy having long but unspecialized tails (unspecialized pseudoautotomy) without multiple breaks over time. All Scaphiodontophis colour patterns have a general resemblance to that of venomous coral snakes and offer protection from generalizing predators having innate or other triggered responses to coral snake colours. The aposematic effect is enhanced by tail thrashing and head twitching behaviours. The characteristic foraging pose of S. annulatus, which tends to expose the head and anterior body, makes even the incomplete tricolour pattern effective as an antipredator defence. No evidence supports the idea that tail thrashing or the incomplete tricolour pattern directs the predator attacks to the tail to expedite pseudoautotomy. Coral snake mimicry and specialized pseudoautotomy are shown not to be co-evolved and pseudautotomy seems to have evolved long before mimetic coloration in this genus.  相似文献   

4.
Postembryonic changes in the dermal and epidermal pigment cell architecture of the striped and nonstriped morph of the Japanese four‐lined snake Elaphe quadrivirgata were examined to reveal stripe pattern formation after hatching. The striped and nonstriped morphs were distinguishable at the hatching, suggesting that the basis of stripe pattern was formed during embryonic development. In the striped morph, the color of stripes changed from red‐brown in juveniles to vivid dark‐brown in adults, and density of dermal melanophore increased much more in the stripe than background dorsal scales with growth. This increase in density of dermal melanophore was accompanied not only by the increased epidermal melanophore density but also by the change in vertical structures of dermal melanophore. By contrast, the density of epidermal and dermal melanophore evenly increased over the dorsal scales in the nonstriped morph. Thus, the increased vividness of the stripe pattern after hatching is achieved through localized increase of melanophore density particularly in the stripe region but not over the whole dorsal scales. J. Morphol. 277:196–203, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
The Egyptian cobra, Naja h. haje, is the largest of the African cobras and is a member of a successful and medically important species complex found throughout Africa, north and south of the Sahara, as well as across the Arabian Peninsula to Oman. Although its phylogenetic position and venom characteristics have been well studied, its development has not. Here, we present a normal staging table for N. h. haje, based on external features. Comparison with firstly the Asian monocled cobra, Naja kaouthia, and then with the small number of other oviparous snake species, allowed us to examine whether differences between two species in the same genus were of the same type and magnitude as those between unrelated genera. In fact, at least with respect to external features, we found a similar level of disparity. N. h. haje embryos lagged behind those of N. kaouthia in body and head scale development, size in ovo and hatchling length, despite having a slightly shorter incubation period and a somewhat larger adult size. Some of these differences may have been the result of differing incubation temperatures. Nonetheless, there does appear to be a broadly conserved pattern of in ovo development in at least macrostomatan snakes.  相似文献   

6.
7.
The reproductive biology and embryonic development of Typhlopidae have rarely been explored. This family of snakes includes mostly oviparous species with uterine egg retention, but the morphology and development of embryos remain unknown. This work aimed to describe the embryonic development of Amerotyphlops brongersmianus from the northeast of Argentina. For this purpose, embryos from intrauterine eggs of gravid females and eight post-ovipositional eggs incubated in the laboratory were analyzed. Embryonic stages, corresponding to the early, mid and advanced development, and a hatchling were described. The main organs and systems form during the period of intrauterine embryonic retention. Comparing to other snakes, differences in the development of cranial structures such as encephalic vesicles and mandibular and maxillary processes were identified. After oviposition the development and differentiation of the tissues and organs completes, the body scales develop, the characteristic pattern of pigmentation establishes and the embryo grows and consumes the yolk. On average, the incubation period lasts 55 days. Differences in the stage of development at oviposition among females of different populations were observed. Embryonic retention could extend up to advanced stages of development.  相似文献   

8.
We analysed the differentiation of body cover in the grass snake (Natrix natrix L.) over the full length of the embryo's body at each developmental stage. Based on investigations using both light and scanning electron microscopes, we divided the embryonic development of the grass snake integument into four phases. The shape of the epidermal cells changes first on the caudal and ventral parts of the embryo, then gradually towards the rostral and dorsal areas. In stage V on the ventral side of the embryo the gastrosteges are formed from single primordia, but on the dorsal side the epidermis forms the scale primordia in stage VII. This indicates that scalation begins on the ventral body surface, and spreads dorsally. The appearance of melanocytes between the cells of the stratum germinativum in stage VII coincides with changes in embryo colouration. The first dermal melanocytes were detected in stage XI so in this stage the definitive skin pattern is formed. In the same stage the epidermis forms the first embryonic shedding complex and the periderm layer begins to detach in small, individual flakes. This process coincides with rapid growth of the embryos.  相似文献   

9.
Species identification has been the core issue in all approaches of conservation of endangered wild life. In this regard molecular techniques for species authentication have proved indispensable. A novel multiplex PCR assay for the identification of three Indian snake species Python morulus, Ptyas mucosus, and Naja naja is successfully demonstrated using 16S rRNA gene. Three reverse primers and a common forward primer were designed to generate three different size species-specific PCR fragments. Absence of any PCR amplification in non-target species proves the specificity of the primers. These four primers were combined in a multiplex assay to enable identification of three snake species in a single reaction. The assay described here shows its utility in identifying unknown snake specimen and in case of samples yielding low quality DNA. This multiplex PCR technique using novel primers is an unprecedented approach offered for forensic identification of exhibits originating from three Indian snake species. It is expected that this endeavor will help strengthening conservation efforts for these species.  相似文献   

10.
The occurrence of coral snake coloration among unrelated venomous and non-venomous New World snake species has often been explained in terms of warning coloration and mimicry. The idea that snake predators would avoid coral snakes in nature seems widely established and is postulated in many discussions on coral snake mimicry. However, the few workers that have tested a potential aposematic function of the conspicuous colour pattern focused exclusively on behaviour of snake predators towards coloured abstract models. Here we report on behaviour of temporarily caged, wild coatis (Nasua narica) when confronted with co-occurring live snakes, among which were two species of venomous coral snakes. Five different types of responses have been observed, ranging from avoidance to predation, yet none of the coatis avoided either of the two coral snake species or other species resembling these. As in earlier studies coatis appeared to avoid coral snake models, our findings show that results from studies with abstract snake models cannot unconditionally serve as evidence for an aposematic function of coral snake coloration.  相似文献   

11.
To investigate whether the thickness of the cornea in snakes correlates with overall anatomy, habitat or daily activity pattern, we measured corneal thickness using optical coherence tomography scanning in 44 species from 14 families (214 specimens) in the collection at the Natural History Museum (Denmark). Specifically, we analyzed whether the thickness of the cornea varies among species in absolute terms and relative to morphometrics, such as body length, spectacle diameter, and spectacle thickness. Furthermore, we examined whether corneal thickness reflects adaptation to different habitats and/or daily activity patterns. The snakes were defined as arboreal (n = 8), terrestrial (n = 22), fossorial (n = 7), and aquatic (n = 7); 14 species were classified as diurnal and 30 as nocturnal. We reveal that the interspecific variation in corneal thickness is largely explained by differences in body size, but find a tendency towards thicker corneas in diurnal (313 ± 227 μm) compared to nocturnal species (205 ± 169 μm). Furthermore, arboreal snakes had the thickest corneas and fossorial snakes the thinnest. Our study shows that body length, habitat, and daily activity pattern could explain the interspecific variation in corneal morphology among snakes. This study provides a quantitative analysis of the evolution of the corneal morphology in snakes, and it presents baseline values of corneal thickness of multiple snake species. We speculate that the cornea likely plays a role in snake vision, despite the fact that results from previous studies suggest that the cornea in snakes is not relevant for vision (Sivak, Vision Research, 1977, 17, 293–298).  相似文献   

12.
This study report about the differentiation of pancreatic acinar tissue in grass snake, Natrix natrix, embryos using light microscopy, transmission electron microscopy, and immuno-gold labeling. Differentiation of acinar cells in the embryonic pancreas of the grass snake is similar to that of other amniotes. Pancreatic acini occurred for the first time at Stage VIII, which is the midpoint of embryonic development. Two pattern of acinar cell differentiation were observed. The first involved formation of zymogen granules followed by cell migration from ducts. In the second, one zymogen granule was formed at the end of acinar cell differentiation. During embryonic development in the pancreatic acini of N. natrix, five types of zymogen granules were established, which correlated with the degree of their maturation and condensation. Within differentiating acini of the studied species, three types of cells were present: acinar, centroacinar, and endocrine cells. The origin of acinar cells as well as centroacinar cells in the pancreas of the studied species was the pancreatic ducts, which is similar as in other vertebrates. In the differentiating pancreatic acini of N. natrix, intermediate cells were not present. It may be related to the lack of transdifferentiation activity of acinar cells in the studied species. Amylase activity of exocrine pancreas was detected only at the end of embryonic development, which may be related to animal feeding after hatching from external sources that are rich in carbohydrates and presence of digestive enzymes in the egg yolk. Mitotic division of acinar cells was the main mechanism of expansion of acinar tissue during pancreas differentiation in the grass snake embryos.  相似文献   

13.
By studying genes associated with coat colour, we can understand the role of these genes in pigmentation but also gain insight into selection history. North European short‐tailed sheep, including Swedish breeds, have variation in their coat colour, making them good models to expand current knowledge of mutations associated with coat colour in sheep. We studied ASIP and MC1R, two genes with known roles in pigmentation, and their association with black coat colour. We did this by sequencing the coding regions of ASIP in 149 animals and MC1R in 129 animals from seven native Swedish sheep breeds in individuals with black, white or grey fleece. Previously known mutations in ASIP [recessive black allele: g.100_105del (D5) and/or g.5172T>A] were associated with black coat colour in Klövsjö and Roslag sheep breeds and mutations in both ASIP and MC1R (dominant black allele: c.218T>A and/or c.361G>A) were associated with black coat colour in Swedish Finewool. In Gotland, Gute, Värmland and Helsinge sheep breeds, coat colour inheritance was more complex: only 11 of 16 individuals with black fleece had genotypes that could explain their black colour. These breeds have grey individuals in their populations, and grey is believed to be a result of mutations and allelic copy number variation within the ASIP duplication, which could be a possible explanation for the lack of a clear inheritance pattern in these breeds. Finally, we found a novel missense mutation in MC1R (c.452G>A) in Gotland, Gute and Värmland sheep and evidence of a duplication of MC1R in Gotland sheep.  相似文献   

14.
Actions of snake neurotoxins on an insect nicotinic cholinergic synapse   总被引:1,自引:0,他引:1  
Here we examine the actions of six snake neurotoxins (α-cobratoxin from Naja naja siamensis, erabutoxin-a and b from Laticauda semifasciata; CM12 from N. haje annulifera, toxin III 4 from Notechis scutatus and a long toxin from N. haje) on nicotinic acetylcholine receptors in the cercal afferent, giant interneurone 2 synapse of the cockroach, Periplaneta americana. All toxins tested reduced responses to directly-applied ACh as well as EPSPs evoked by electrical stimulation of nerve XI with similar time courses, suggesting that their action is postsynaptic. Thus, these nicotinic receptors in a well-characterized insect synapse are senstive to both long and short chain neurotoxins. This considerably expands the range of snake toxins that block insect nicotinic acetylcholine receptors and may enable further pharmacological distinctions between nAChR subtypes.  相似文献   

15.
We analyzed the development of the pancreatic ducts in grass snake Natrix natrix L. embryos with special focus on the three‐dimensional (3D)‐structure of the duct network, ultrastructural differentiation of ducts with attention to cell types and lumen formation. Our results indicated that the system of ducts in the embryonic pancreas of the grass snake can be divided into extralobular, intralobular, and intercalated ducts, similarly as in other vertebrate species. However, the pattern of branching was different from that in other vertebrates, which was related to the specific topography of the snake's internal organs. The process of duct remodeling in Natrix embryos began when the duct walls started to change from multilayered to single‐layered and ended together with tube formation. It began in the dorsal pancreatic bud and proceeded toward the caudal direction. The lumen of pancreatic ducts differentiated by cavitation because a population of centrally located cells was cleared through cell death resembling anoikis. During embryonic development in the pancreatic duct walls of the grass snake four types of cells were present, that is, principal, endocrine, goblet, and basal cells, which is different from other vertebrate species. The principal cells were electron‐dense, contained indented nuclei with abundant heterochromatin, microvilli and cilia, and were connected by interdigitations of lateral membranes and junctional complexes. The endocrine cells were electron‐translucent and some of them included endocrine granules. The goblet cells were filled with large granules with nonhomogeneous, moderately electron‐dense material. The basal cells were small, electron‐dense, and did not reach the duct lumen.  相似文献   

16.
Two biological processes regulate light‐induced skin colour change. A fast ‘physiological pigmentation change’ (i.e. circadian variations or camouflage) involves alterations in the distribution of pigment containing granules in the cytoplasm of chromatophores, while a slower ‘morphological pigmentation change’ (i.e. seasonal variations) entails changes in the number of pigment cells or pigment type. Although linked processes, the neuroendocrine coordination triggering each response remains largely obscure. By evaluating both events in Xenopus laevis embryos, we show that morphological pigmentation initiates by inhibiting the activity of the classical retinal ganglion cells. Morphological pigmentation is always accompanied by physiological pigmentation, and a melatonin receptor antagonist prevents both responses. Physiological pigmentation also initiates in the eye, but with repression of melanopsin‐expressing retinal ganglion cell activity that leads to secretion of alpha‐melanocyte‐stimulating hormone (α‐MSH). Our findings suggest a model in which eye photoperception links physiological and morphological pigmentation by altering α‐MSH and melatonin production, respectively.  相似文献   

17.
The structure of the snake community was studied between 1996 and 2000 on a transect in the mangrove ecological zone of southern Nigeria, West Africa. In three major habitats, both taxonomical diversity and frequency of observations in relation to sampling effort were investigated. In general terms, the complexity of the snake community appeared less than in other habitats of the same geographic region (i.e. swamp forest and forest–plantation mosaics). In fact, only eighteen species were recorded, whereas 43 species are known to inhabit neighbouring habitats. A Principal Component Analysis allowed arrangement of the various species into two main groups in relation to the habitats of capture: (1) a group of species of rainforest biota (i.e. Toxicodryas blandingii, Thelotornis kirtlandii, Thrasops flavigularis, Rhamnophis aethiopissa, Gastropyxis smaragdina, Grayia smythii, Pseudohaje goldii, Python sebae), and (2) a group of species that, at least in Niger Delta, are typically linked to altered habitats, including derived savannas, plantations and suburbia (i.e. Psammophis cf. phillipsi, Philothamnus cf. nitidus, Hapsidophrys lineatus, Crotaphopeltis hotamboeia, Boaedon lineatus, Naja nigricollis, Python regius). The community structure in terms of food habits and body sizes appeared similar to those of other snake assemblages from different habitats of southern Nigeria. The conservation implications of our results are also discussed.  相似文献   

18.
19.
蒋福升  陈铌铍  丁滨 《蛇志》2014,(1):108-111
目的探讨发酵床模式养殖尖吻蝮、舟山眼镜蛇和王锦蛇的可行性。方法分别选取3种健康驯饲好的4月龄蛇苗,各分成2组,一组采用传统沙床饲养模式,另一组采用发酵床饲养模式,饲养8个月后,通过比较蛇的体重、料肉比及环境氨气浓度变化,分析发酵床养殖模式优劣。结果就尖吻蝮养殖效果而言,采用两种养殖模式无显著性差异;但采用发酵床模式对眼镜蛇和王锦蛇饲养相比沙床模式具有明显优势,表现为增重更快、料肉比更小,且氨气浓度显著降低;氨气浓度及体重变化分析结果表明,5ppm以上浓度对王锦蛇生长有一定影响,10ppm以上浓度对眼镜蛇生长有一定影响。结论发酵床技术可用于蛇类养殖,而且总体上优于传统沙床模式;此外,发酵床模式尤其适宜如眼镜蛇和王锦蛇等活动较多、进食量较大、排便量大的蛇类养殖。  相似文献   

20.
Here we describe the embryonic development of Salvator merianae external morphologic features, as based on observation of 28 embryos across different days of incubation at 31 ± 0.5°C. Observed developmental stages were grouped and classified into the early, middle, and late periods. The early period (Stages 3–11) is distinguished by the origin of the encephalic vesicles, sensory placodes, pharyngeal arches, and degree of body flexion and rotation. The medium period (Stages 8–15) is distinguished by limb differentiation and by cranium‐facial characteristics. The late period (Stages 15–18) is determined by scale patterns, pigmentation, and embryo growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号