首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of human action, the Earth has entered an era where profound changes in the global environment are creating novel conditions that will be discernable far into the future. One consequence may be a large reduction of the Earth's biodiversity, potentially representing a sixth mass extinction. With effective stewardship, the global change drivers that threaten the Earth's biota could be alleviated, but this requires clear understanding of the drivers, their interactions, and how they impact ecological communities. This review identifies 10 anthropogenic global change drivers and discusses how six of the drivers (atmospheric CO2 enrichment, climate change, land transformation, species exploitation, exotic species invasions, eutrophication) impact Earth's biodiversity. Driver impacts on a particular species could be positive or negative. In either case, they initiate secondary responses that cascade along ecological lines of connection and in doing so magnify the initial impact. The unique nature of the threat to the Earth's biodiversity is not simply due to the magnitude of each driver, but due to the speed of change, the novelty of the drivers, and their interactions. Emphasizing one driver, notably climate change, is problematic because the other global change drivers also degrade biodiversity and together threaten the stability of the biosphere. As the main academic journal addressing global change effects on living systems, GCB is well positioned to provide leadership in solving the global change challenge. If humanity cannot meet the challenge, then GCB is positioned to serve as a leading chronicle of the sixth mass extinction to occur on planet Earth.  相似文献   

2.
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.  相似文献   

3.
Understanding how survival is affected by the environment is essential to gain insight into population dynamics and the evolution of life‐history traits as well as to identify environmental selection pressures. However, we still have little understanding of the relative effect of different environmental factors and their interactions on demographic traits and population dynamics. Here we used two long‐term, individual‐based datasets on Tawny Owl Strix aluco (1981–2010) and Ural Owl S. uralensis (1986–2010) to undertake capture‐mark‐recapture analysis of annual survival of adult females in response to three biologically meaningful environmental variables and their two‐way interactions. Despite the similar ecology of these two species, their survival was associated with different and uncorrelated environmental drivers. The main correlate of Tawny Owl survival was an inverse association with snow depth (winter severity). For Ural Owl, high food (vole) abundance improved survival during years with deep snow, but was less important during years with little snow. In addition, Ural Owl survival was strongly density‐dependent, whereas Tawny Owl survival was not. Our findings advise caution in extrapolating demographic inferences from one species to another, even when they are very closely related and ecologically similar. Analyses including only one or few potential environmental drivers of a species' survival may lead to incomplete conclusions because survival may be affected by several factors and their interactions.  相似文献   

4.
Elephant drivers, sometimes termed mahouts, are known to share a relationship with their elephants rarely matched in other human-animal interactions with regard to time invested, extent of cooperative activity, and everpresent risk to the driver. An investigation of this relationship was pursued at two tourist lodges in Nepal where elephants are used to transport tourists into a nearby jungle to view wildlife. The study sought to investigate the drivers' perceptions regarding the individual and social behavior of the elephants, the perceptions of the elephants, and the elephants' interactions with drivers. Standardized open-ended questions were administered with translator assistance to 17 head drivers of elephants. Drivers attributed their management success to the time and care they invested in caring for and becoming familiar with the elephant. Drivers worked in partnership with elephants to gather and prepare the elephants' food. Elephants responded to vocal commands of drivers for saddling. Drivers also took responsibility for elephants in their varied interactions with tourists. Although drivers varied in specifying the most desirable elephant at their lodge, they highly agreed on the identity of the worst elephant because of its aggressivity. In general, drivers believed that their elephants loved and trusted them. Most drivers reported that their elephants did not get angry with them. Yet, they knew that elephants would most like to be free in the jungle. Drivers presented consistent information as to the elephants' social preferences for and dislikes of one another.  相似文献   

5.
Cleaning interactions are essential for healthy marine ecosystem communities. This study reports the first documentation of the whale shark Rhincodon typus cleaning behaviour in the Indo-West Pacific by two wrasse species, the blue-streak cleaner wrasse Labroides dimidiatus and the moon wrasse Thalassoma lunare in Cebu, Philippines. This study documented 36 cleaning interactions with 14 individual whale sharks. The cleaning interactions appear opportunistic rather than targeted by the sharks, unlike that observed in other species of elasmobranchs. Further work should focus on understanding the drivers of these unique cleaning interactions.  相似文献   

6.
The study of the social drivers of animal dispersal is key to understanding the evolution of social systems. Among the social drivers of natal emigration, the conspecific attraction, aggressive eviction, and reduced social integration hypotheses predict that sexually mature individuals who receive more aggressive behavior and are engaged in less affiliative interactions are more likely to disperse. Few reports have explored these proximate factors affecting emigration in cooperatively breeding species, particularly of Neotropical primates. In this study, we investigated the dispersal patterns and tested the social drivers of natal emigration in the golden lion tamarin (Leontopithecus rosalia) — an endangered species inhabiting Atlantic rainforests fragments in Brazil. We used behavioral and demographic data collected during 7 years from 68 groups of tamarins inhabiting 20 forest fragments. Our analyses from the 160 dispersing individuals showed that dispersal success is higher for males and for those engaged in parallel dispersal, but that males and females use different strategies to enhance their dispersal success, males immigrate into established groups while females form new groups. We did not find high levels of agonistic behavior among group members before natal emigration. Instead we found that conspecific attraction drives natal emigration in both sexes, while additionally the low level of affiliative interactions within the natal group triggers male emigration. We discuss natal emigration in the broader perspective of the cooperative breeding system and the implications of these findings for the conservation of the species.  相似文献   

7.
Increasing CO2 concentration ([CO2]) is likely to affect future species distributions, in interaction with other climate change drivers. However, current modeling approaches still seldom consider interactions between climatic factors and the importance of these interactions therefore remains mostly unexplored. Here, we combined dendrochronological and modeling approaches to study the interactive effects of increasing [CO2] and temperature on the distribution of one of the main European liana species, Hedera helix. We combined a classical continent‐wide species distribution modeling approach with a case study using H. helix and Quercus cerris tree rings, where we explored the long‐term influence of a variety of climate drivers, including increasing [CO2], and their interactions, on secondary growth. Finally, we explored how our findings could influence the model predictions. Climate‐only model predictions showed a small decrease in habitat suitability for H. helix in Europe; however, this was accompanied by a strong shift in the distribution toward the north and east. Our growth ring data suggested that H. helix can benefit from high [CO2] under warm conditions, more than its tree hosts, which showed a weaker response to [CO2] coupled with higher cavitation risk under high temperature. Increasing [CO2] might therefore offset the negative effects of high temperatures on H. helix, and we illustrate how this might translate into maintenance of H. helix in warmer areas. Our results highlight the need to consider carbon fertilization and interactions between climate variables in ecological modeling. Combining dendrochronological analyses with spatial distribution modeling may provide opportunities to refine predictions of how climate change will affect species distributions.  相似文献   

8.
Natural variation as well as human impacts can alter the light environment in lakes in ways that affect aquatic host-parasite interactions. In laboratory infection assays, Rogalski and Duffy (2020) determine that the bacterial parasite Pasteuria ramosa adapts to solar radiation by increasing its transmission potential to its zooplankton host, Daphnia dentifera. Local adaptation to light can allow P. ramosa spores to retain their infectivity following light exposure. Future work should determine the underlying drivers of P. ramosa light adaptation and how adaptation might alter ecosystem dynamics.  相似文献   

9.
Human–livestock–wildlife interactions have increased in Kenyan rangelands in recent years, but few attempts have been made to evaluate their impact on the rangeland habitat. This study identified drivers of increased human–livestock–wildlife interactions in the Meru Conservation Area between 1980 and 2000 and their effects on the vegetation community structure. The drivers were habitat fragmentation, decline in pastoral grazing range, loss of wildlife dispersal areas and increase in livestock population density. Agricultural encroachment increased by over 76% in the western zone adjoining Nyambene ranges and the southern Tharaka area, substantially reducing the pastoral grazing range and wildlife dispersal areas. Livestock population increased by 41%, subjecting areas left for pastoral grazing in the northern dispersal area to prolonged heavy grazing that gave woody plant species a competitive edge over herbaceous life‐forms. Consequently, open wooded grassland, which was the dominant vegetation community in 1980, decreased by c. 40% as bushland vegetation increased by 42%. A substantial proportion of agro pastoralists were encountered around Kinna and Rapsu, areas that were predominantly occupied by pastoralists three decades ago, indicating a possible shift in land use in order to spread risks associated with habitat alterations.  相似文献   

10.
Ecologists routinely use statistical models to detect and explain interactions among ecological drivers, with a goal to evaluate whether an effect of interest changes in sign or magnitude in different contexts. Two fundamental properties of interactions are often overlooked during the process of hypothesising, visualising and interpreting interactions between drivers: the measurement scale – whether a response is analysed on an additive or multiplicative scale, such as a ratio or logarithmic scale; and the symmetry – whether dependencies are considered in both directions. Overlooking these properties can lead to one or more of three inferential errors: misinterpretation of (i) the detection and magnitude (Type-D error), and (ii) the sign of effect modification (Type-S error); and (iii) misidentification of the underlying processes (Type-A error). We illustrate each of these errors with a broad range of ecological questions applied to empirical and simulated data sets. We demonstrate how meta-analysis, a widely used approach that seeks explicitly to characterise context dependence, is especially prone to all three errors. Based on these insights, we propose guidelines to improve hypothesis generation, testing, visualisation and interpretation of interactions in ecology.  相似文献   

11.
There is an ongoing debate on whether species' traits or neutrality generate recurrent patterns of mutualistic networks. Although there have been recent advances on the issue, many studies neglect the seasonal dynamics of these drivers. In this study, we investigated how pervasive are the drivers (i.e. species’ size, phenological overlap and species relative abundance) of the frequency of pairwise interactions and the aggregate metrics of seasonal seed dispersal networks in a semideciduous forest from the savannahs of Southeastern Brazil. We used a likelihood approach and built probability matrices based on different drivers to compare how they fit in the frequency and structure of the seasonal observed networks. We found that in both seasons trait-based processes, especially phenological overlap between species, best predicted the frequency of pairwise interactions. However, species relative abundances performed better than species traits in explaining most of aggregate network metrics in both seasons, except for the interaction evenness. These findings suggest that ecological and evolutionary processes are seasonally pervasive and determine the ability of species to interact with their partners. Besides, the general structure of the seasonal networks is less sensitive to species traits and its drivers remain seasonally constant. We conclude that our ability to understand the complexity of plant-frugivore interactions depends on assessing the contribution of species traits and their relative abundances to the structure of seasonal-detailed networks.  相似文献   

12.
Abstract

Background: Few studies analysing lichen diversity have simultaneously considered interactions among drivers that operate at different spatial and temporal scales.

Aims: The aims of this study were to evaluate the relative importance of host tree, and local, landscape and historical factors in explaining lichen diversity in managed temperate forests, and to test the potential interactions among factors acting at different spatial scales.

Methods: Thirty-five stands were selected in the ?rség region of western Hungary. Linear models and multi-model inference within an information-theory framework were used to evaluate the role of different variables on lichen species richness.

Results: Drivers at multiple spatial scales contributed to shaping lichen species richness both at the tree and plot levels. Tree-level species richness was related to both tree- and plot-level factors. With increasing relative diffuse light lichen species richness increased; this effect was stronger on the higher than on the lower part of the trunks. At the plot scale, species richness was affected by local drivers. Landscape and historical factors had no, or only a marginal, effect.

Conclusions: Lichen conservation in temperate managed forests could be improved if the complex interactions among host tree quality and availability, micro-climatic conditions, and management were taken into consideration.  相似文献   

13.
Drought is an increasingly common climatic event that can devastate ecosystems, as well as surrounding agricultural and forestry industries. Few places face this challenge more than Australia, where millennia of droughts linked to geography and climatic drivers, such as El Niño, have shaped the flora and fauna into forms predicated on resilience and economy. How an organism responds to these cyclic challenges is a combination of the inherent tolerance mechanisms encoded in their genome and outside influences, such as the effect of nutrients and symbiotic interactions. In this issue of Physiologia Plantarum, Tariq et al. (2019) describes how the presence of the element phosphorus can bolster the physiological and biochemical response of eucalypt seedlings to severe drought conditions.  相似文献   

14.
Species distribution models (SDMs) are frequently used to understand the influence of site properties on species occurrence. For robust model inference, SDMs need to account for the spatial autocorrelation of virtually all species occurrence data. Current methods do not routinely distinguish between extrinsic and intrinsic drivers of spatial autocorrelation, although these may have different implications for conservation. Here, we present and test a method that disentangles extrinsic and intrinsic drivers of spatial autocorrelation using repeated observations of a species. We focus on unknown habitat characteristics and conspecific interactions as extrinsic and intrinsic drivers, respectively. We model the former with spatially correlated random effects and the latter with an autocovariate, such that the spatially correlated random effects are constant across the repeated observations whereas the autocovariate may change. We tested the performance of our model on virtual species data and applied it to observations of the corncrake Crex crex in the Netherlands. Applying our model to virtual species data revealed that it was well able to distinguish between the two different drivers of spatial autocorrelation, outperforming models with no or a single component for spatial autocorrelation. This finding was independent of the direction of the conspecific interactions (i.e. conspecific attraction versus competitive exclusion). The simulations confirmed that the ability of our model to disentangle both drivers of autocorrelation depends on repeated observations. In the case study, we discovered that the corncrake has a stronger response to habitat characteristics compared to a model that did not include spatially correlated random effects, whereas conspecific interactions appeared to be less important. This implies that future conservation efforts should primarily focus on maximizing habitat availability. Our study shows how to systematically disentangle extrinsic and intrinsic drivers of spatial autocorrelation. The method we propose can help to correctly identify the main drivers of species distributions.  相似文献   

15.
Positive and negative plant–plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co‐occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant–plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co‐ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co‐occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207–272.8 Myr led to competition, while values outside this range or fleshy‐fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species‐specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant–plant interactions. Our study helps to improve current theory on plant–plant interactions and to understand how these interactions can respond to expected modifications in species composition and climate associated to ongoing global environmental change.  相似文献   

16.
Plant-plant interactions and environmental change   总被引:3,自引:0,他引:3  
Natural systems are being subjected to unprecedented rates of change and unique pressures from a combination of anthropogenic environmental change drivers. Plant-plant interactions are an important part of the mechanisms governing the response of plant species and communities to these drivers. For example, competition plays a central role in mediating the impacts of atmospheric nitrogen deposition, increased atmospheric carbon dioxide concentrations, climate change and invasive nonnative species. Other plant-plant interaction processes are also being recognized as important factors in determining the impacts of environmental change, including facilitation and evolutionary processes associated with plant-plant interactions. However, plant-plant interactions are not the only factors determining the response of species and communities to environmental change drivers - their activity must be placed within the context of the wide range of factors that regulate species, communities and ecosystems. A major research challenge is to understand when plant-plant interactions play a key role in regulating the impact of environmental change drivers, and the type of role that plant-plant interactions play. Although this is a considerable challenge, some areas of current research may provide the starting point to achieving these goals, and should be pursued through large-scale, integrated, multisite experiments.  相似文献   

17.
Current evidence suggests that pollen is both chemically and structurally protected. Despite increasing interest in studying bee–flower networks, the constraints for bee development related to pollen nutritional content, toxicity and digestibility as well as their role in the shaping of bee–flower interactions have been poorly studied. In this study we combined bioassays of the generalist bee Bombus terrestris on pollen of Cirsium, Trifolium, Salix, and Cistus genera with an assessment of nutritional content, toxicity, and digestibility of pollen. Microcolonies showed significant differences in their development, non‐host pollen of Cirsium being the most unfavorable. This pollen was characterized by the presence of quite rare δ7‐sterols and a low digestibility. Cirsium consumption seemed increase syrup collection, which is probably related to a detoxification mixing behavior. These results strongly suggest that pollen traits may act as drivers of plant selection by bees and partly explain why Asteraceae pollen is rare in bee generalist diet.  相似文献   

18.
Background: High-elevation mountain systems may be particularly responsive to climate change.

Aims: Here we investigate how changes along elevation gradients in mountain systems can aid in predicting vegetation distributional changes in time, focusing on how changing climatic controls affect meso-scale transitions at the lower and upper boundaries of alpine vegetation (with forest and subnival zones, respectively) as well as micro-scale transitions among plant communities within the alpine belt. We focus on climate-related drivers, particularly in relation to climate change, but also consider how species interactions, dispersal and responses to disturbance may influence plant responses to these abiotic drivers.

Results: Empirical observations and experimental studies indicate that changing climatic controls influence both meso-scale transitions at the upper and lower boundaries of alpine vegetation and micro-scale transitions among plant communities within tundra. Micro-scale heterogeneity appears to buffer response in many cases, while interactions between climate and other changes may often accelerate change.

Conclusions: Interactions with microtopography and larger edaphic gradients have the capacity to both facilitate rapid changes and reinforce stability, and that these interactions will affect the responsiveness of vegetation to climate change at different spatial scales.  相似文献   

19.
Bark beetles are among the most devastating biotic agents affecting forests globally and several species are expected to be favored by climate change. Given the potential interactions of insect outbreaks with other biotic and abiotic disturbances, and the potentially strong impact of changing disturbance regimes on forest resources, investigating climatic drivers of destructive bark beetle outbreaks is of paramount importance. We analyzed 17 time‐series of the amount of wood damaged by Ips typographus, the most destructive pest of Norway spruce forests, collected across 8 European countries in the last three decades. We aimed to quantify the relative importance of key climate drivers in explaining timber loss dynamics, also testing for possible synergistic effects. Local outbreaks shared the same drivers, including increasing summer rainfall deficit and warm temperatures. Large availability of storm‐felled trees in the previous year was also strongly related to an increase in timber loss, likely by providing an alternative source of breeding material. We did not find any positive synergy among outbreak drivers. On the contrary, the occurrence of large storms reduced the positive effect of warming temperatures and rainfall deficit. The large surplus of breeding material likely boosted I. typographus population size above the density threshold required to colonize and kill healthy trees irrespective of other climate triggers. Importantly, we found strong negative density dependence in I. typographus that may provide a mechanism for population decline after population eruptions. Generality in the effects of complex climatic events across different geographical areas suggests that the large‐scale drivers can be used as early warning indicators of increasing local outbreak probability.  相似文献   

20.
Trophic interactions and disturbance events can shape the structure and function of ecosystems. However, the effects of drivers such as predation, fire and climatic variables on species distributions are rarely considered concurrently. We used a replicated landscape‐scale predator management experiment to compare the effects of red fox Vulpes vulpes control, time‐since‐fire, vegetation type and other environmental variables on native herbivore distributions. Occurrence data for four native herbivores and an invasive predator – the red fox – were collected from 240 sites across three baited (for lethal fox control) and three unbaited forest blocks (4659–9750 ha) in south‐western Victoria, Australia, and used to build species distribution models. The herbivore taxa were as follows: red‐necked wallaby Macropus rufogriseus, black wallaby Wallabia bicolour, grey kangaroo Macropus fuligenosus and Macropus giganteus and common brushtail possum Trichosurus vulpecula. Fox control and fire had little effect on herbivore occurrence, despite the literature suggesting it can influence abundance, while climate, proximity to farmland and topography were more influential. This may be because the region’s high productivity and agricultural pastures subsidise food resources for both predators and prey within the forest blocks and so dampen trophic interactions. Alternatively, these drivers may affect herbivore abundance, but not herbivore occurrence. Understanding the drivers of herbivore distributions is an important step in predicting the effects of herbivory on other species, particularly after management interventions such as predator control and prescribed burns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号