首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The development of luminous structures and the acquisition of luminescence competence during the ontogeny of the velvet belly lantern shark Etmopterus spinax, a deep‐sea squalid species, were investigated. The sequential appearance of nine different luminous zones during shark embryogenesis were established, and a new terminology for them given. These zones form the complex luminous pattern observed in free‐swimming animals. The organogenesis of photophores (photogenic organs) from the different luminous zones was followed, and photophore maturation was marked by the appearance of green fluorescent vesicles inside the photocytes (photogenic cells). Peroxide‐induced light emissions as well as spontaneous luminescence analysis indicated that the ability of E. spinax to produce light was linked to the presence of these fluorescent vesicles and occured prior to birth. The size of photogenic organs, as well as the percentage of ventral body surface area occupied by the luminous pattern and covered by photophores increased sharply during embryogenesis but remained relatively stable in free‐swimming animals. All these results strongly suggest camouflage by counter‐illumination in juvenile E. spinax.  相似文献   

3.
Photogenic organs (photophores) of the velvet belly lantern shark (Etmopterus spinax) are under hormonal control, since melatonin (MT) and prolactin (PRL) trigger luminescence while α-melanocyte-stimulating hormone (α-MSH) prevents this light to be emitted. A recent study supported, however, the presence of numerous nerve fibres in the photogenic tissue of this shark. Immunohistochemical and pharmacological results collected in this work support these nerve fibres to be inhibitory GABAergic nerves since (i) GABA immunoreactivity was detected inside the photogenic tissue, where previous labelling detected the nerve fibre structures and (ii) GABA was able to inhibit MT and PRL-induced luminescence, which was on the other hand increased by the GABA(A) antagonist bicuculline (BICU). In addition, we also demonstrated that BICU can induce light per se by provoking pigment retraction in the pigmented cells composing the iris-like structure of the photophore, attaining, however, only about 10% of hormonally induced luminescence intensity at 10(-3)mol L(-1). This strongly supports that a GABA inhibitory tonus controls photophore "aperture" in the photogenic tissue of E. spinax but also that MT and PRL have more than one target cell type in the photophores.  相似文献   

4.
The structure of the photophores (luminous organs) of two species of deep‐sea fishes from the Strait of Messina, Argyropelecus hemigymnus and Maurolicus muelleri , was examined. Although significant structural differences were identified between species, especially in photophore organization and distribution, ultrastructural comparisons indicated a marked similarity between them. The photocytes exhibited numerous secretory granules, of different electron density, embedded in an extremely developed rough endoplasmic reticulum. Numerous mitochondria were observed among the secretory granules. The lens appeared to be composed of tightly contiguous polyhedral cells. The reflector was made up of cells rich in guanine crystals embedded in an amorphous matrix and appeared to be surrounded by a layer of connective tissue full of melanocytes. Ventrally, every photophore was delimited by a thick cellular layer called the 'gelatinous layer' with dioptric properties. The results confirm that even though A. hemigymnus and M. muelleri differ widely phylogenetically, they exhibit adaptive convergence, involving similar morphology and physiology in these luminous structures.  相似文献   

5.
A contribution to the knowledge of the photophore structure of the mesopelagic fish Cyclothone braueri (Gonostomatidae) from the central Mediterranean Sea (Strait of Messina) is given by means of a structural and ultrastructural study, to better identify and classify the real anatomical structures costituing these luminous organs. The photocytes exhibit numerous secretory granules, of different electron density, embedded in an extremely developed rough endoplasmic reticulum. The lens appear to be composed of tightly contiguous polyhedral cells. The reflector is made up of cells rich in guanine crystals, embedded in an amorphous matrix and is surrounded by a layer of connective tissue containing melanocytes. Unlike the present knowledge, it is shown that the bioluminescence emitted from C. braueri light organs has glandular nature, with photophores similar to type α from Bassot classification. The phenomenon of adaptive convergence, documenting how the morphology and physiology of the light organs of teleosts is similar in different species despite their taxonomic distance, is confirmed also for C. braueri.  相似文献   

6.
P. J. Herring    P. N. Dilly    Celia  Cope 《Journal of Zoology》1992,227(3):479-491
The oceanic squid Octopoteuthis danue Joubin has one type of photophore on the head, body and arms, but another type on the eight arm tips. The first type has acomplexcapillary network, with elastic walls and a thick reflector. The arm tip organs have no such capillary core but a dense matrix containing paracrystalline assemblies.
Taningia danae Joubin (the only other genus in the family Octopoteuthidae) has only two large arm tip photophores. These are similar in their general organization to the arm tip photophores of Octopoteuthis , but their detailed structure is quite different.
There has evidently been independent evolution of photophores in this family of squids.  相似文献   

7.
Pyroteuthis margaritifera has morphologically distinctive photophores on the tentacles, eyeball and in the mantle cavity. The photogenic tissue in each photophore is identical, has a blue-green fluorescence and luminesces on treatment with dilute hydrogen peroxide. The photocytes frequently contain organized fibrillar material akin to that in the photocytes of certain other cephalopods. Several different types of blood vessel are present among the photocytes, including some, apparently restricted to the photophores, with a microvillous endothelium. Haemocyanin is present not only within identifiable blood vessels but also in some intercellular spaces.
On the basis of their characteristic optical systems the photophores can be separated into three types: (1) tentacular; (2) ocular and anal; (3) branchial and median abdominal. The tentacular photophores have collagenous reflector and light guide systems and the median ones are double organs. The ocular and anal organs do not have collagenous optical structures but an elaborate variety of reflective iridosomes. Those in the aperture of the photophores appear to act as interference filters. The branchial and abdominal organs have iridosomes as the major reflective tissue but collagenous fibrils function as light guides in the aperture of these organs and their emission is diffuse rather than collimated.  相似文献   

8.
对水生萤火虫——条背萤Luciola substriata(Gorham)成虫和幼虫发光器的超微结构进行研究。结果表明,成虫发光器由明显的2层组成:反射层和发光层。反射层由排列紧密的“尿酸囊泡”构成,具有发达的气管结构,对光起反射作用;发光层由大量发光细胞构成,内含典型的发光颗粒、线粒体、内质网及大量糖原,该层通过发光细胞胞质内的生化反应而发光。2层均由非细胞层膜包被,间距25~30μm。发光器腹节由外向内依次为表皮、发光层、反射层和内部细胞层。幼虫发光器球形,由背射层和发光层构成,由非细胞层膜包被。背射层由单层柱状细胞构成,内含大量“尿酸囊泡”。发光层细胞膜相互绞缠,含有2种类型的发光颗粒:“致密”型和“凋亡”型,含有大量的线粒体和无定形颗粒,发光细胞之间分布着大量的气管、微气管及神经末梢,可观察到神经突触。与条背萤相比,陆生种成虫反射层和发光层均无非细胞层膜包被,2层间无明显间距,发光颗粒形状不规则,气管通常形成2分支;陆栖种幼虫发光层形状差异较大,背射层由单层或2~4层细胞构成;相似点在于,成虫发光器都由均由反射层和发光层构成,发光细胞内都含发光颗粒、线粒体及大量糖原,都具有发达的气管结构,发光颗粒相似。幼虫发光器都由背射层和发光层构成,都具有发达的气管和直接的神经支配,发光颗粒相似,都由非细胞层膜包被。  相似文献   

9.
Etmopterus spinax Linnaeus, 1758 is a deep-sea lantern shark that emits blue light thanks to thousands of tiny cup-shaped organs made of a pigmented sheath enclosing light-emitting cells topped by an iris-like structure and a lens. In this study, we investigate the ultrastructure of these photophores in order to improve our understanding of the light emission process. The presence of a novel layer, a putative reflector upholstering the pigmented sheath, is highlighted. The intracellular organization of the photocytes is addressed. They appear as regionalized cells: their basal area is occupied by an ovoid nucleus, their medial area is highly vesiculated and their apical area, oriented toward the photophore center, displays small granular inclusions. We hypothesize this granular area to be the intracellular site of photogenesis in E. spinax, as it is also the most fluorescent part of the photocyte.  相似文献   

10.
1. Isolated photophores from the luminous fish Porichthys produce light in response to adrenaline and the metabolic inhibitors iodoacetic acid (IAA) or potassium cyanide (KCN).2. We attempted to analyse the interactions of cellular metabolism and adrenergic stimulation of the photogenic cells.3. Photophores were treated with IAA in the presence of pyruvate. In these conditions, IAA does inhibit glycolysis without inducing any luminescent activity of the cells.4. Similarly, other photophores were incubated with KCN in the presence of glucose, in order to inhibit cellular respiration while keeping the luminous system inactive.5. We observed that adrenergic stimulation of these photophores remained effective and induced a light emission, demonstrating that glycolytic and oxidative metabolism are not absolutely essential to the mechanism underlying adrenergic activation of the luminous system.6. The comparison of these luminescences with adrenergic responses of control photophores showed that the light emission to adrenaline was markedly inhibited by glycolysis blockade but potentiated by an inhibition of cellular respiration.7. As the inhibitory effect of IAA does not result from a direct action of IAA on the luminous system, these results suggest that adrenaline activation of adrenergic receptors might interact with glycolysis in photogenic cells.8. Glyceraldehyde 3-phosphate, or some derivatives, could be implicated in the glycolytic control of luminescence in the photophores.  相似文献   

11.
Lanternfish, a family Myctophidae, use ventro-lateral body photophores for camouflage of the ventral silhouette, a strategy called counterillumination. While other deep-sea fishes possess pigmented filters and silver reflectors to match sunlight filtering down through the depths, myctophids developed a blue-green reflector for this purpose. In this study, we showed in a lanternfish Diaphus watasei that the reflector comprised monolayered iridophores containing multilayered guanine crystals which enable high reflection with light interference colouration. Platelets shape in body photophores is an unique near-regular hexagonal, probably to allow the homogeneity of reflection angle of the luminescence from photocytes. Focus point of the parabola-like reflector is positioned on the photocytes that ensures the light produced from the photocytes is redirected to the ventral direction. In vitro luminescence reaction using purified luciferase and the substrate coelenterazine showed the light emission at λmax 454 nm, while reflection spectra of the iridophores exhibit peaks at longer wavelength, which accomplish to alter the luminescence emitted from photocytes to longer wavelength to fit the mesopelagic light environment. Taken together, we revealed multiple mechanistic elaborations in myctophid body photophores to achieve effective control of biochemical luminescence for counterillumination.  相似文献   

12.
Abstract. The rhynchoteuthion stage of the jumbo squid, Dosidicus gigas, has morphological characteristics similar to the paralarvae of the purpleback squid, Sthenoteuthis oualaniensis, making it difficult to determine the locations, seasons, and conditions where spawning of jumbo squid occurs. In this study, 180 paralarvae of D. gigas were collected off the west coast of the Baja California peninsula and identified by sequencing a 369-bp fragment of the cytochrome oxidase I gene. Of these, 77 specimens, 0.8–6.0 mm in mantle length, were described. Indices based on morphometric ratios were used to determine whether the shapes of different body structures were reliable for identifying the paralarvae. For two ratios, the results appear to discriminate members of D. gigas from those of S. oualaniensis. Additionally, eye or intestinal photophores were not observed in any paralarvae of D. gigas. Morphological and morphometric information provided a valuable basis for the discrimination and identification of these two species.  相似文献   

13.
 Based on electron-microscopical observations the light-sensing organs of Proxenetes deltoides and Ptychopera westbladi, representatives of the ”Typhloplanoida” Trigonostominae, are described. The photoreceptors in both species belong to the type of rhabdomeric pigment cup ocelli. P. deltoides has a single pigment cell and three sensory cells. P. westbladi possesses eyes made up of a single pigmented cup cell and a single sensory cell. The dioptric apparatus in the eyes of P. deltoides is formed by three proliferations of the cup cell containing giant mitochondria. In P. westbladi, the elements focalizing incoming light also consist of modified mitochondria which are arranged in the section of the cup cell covering the eye cavity. With regard to the new findings, mitochondrial lensing is hypothesized as an autapomorphy of a monophylum encompassing distinct taxa or all members of the free-living Rhabdocoela; the Neodermata also belong to this monophylum. Accepted: 21 March 1996  相似文献   

14.
The trigeminofacial innervation of the cephalic photophores and lateral line organs of Tarletonbeania crenularis has been studied from gross dissections. The facial and trigeminal roots leave the brainstem separately, but later intermingle forming a trigemino‐facial complex. The seventh nerve gives rise to the hyomandibular trunk and sends a branch rostrad to join the trigeminal forming the supra‐ and infraorbital trunks. The supraorbital trunk innervates the Dn photophore, the snout, the iris, the supraorbital lateral line organs and part of the olfactory sacs. The infraorbital trunk supplies the infraorbital lateral line organs, the Vn photophore and the tissues surrounding the premaxillaries. The hyomandibular trunk passes to the opercular photophores and lateral line organs, and together with a branch from the infraorbital trunk supplies the branchiostegal photophores and lateral line organs of the mandible.  相似文献   

15.
The putatively luminous villous tissue in an abdominal pouch of a male specimen of the oceanic midwater shark Euprotomicroides zantedeschia is described. The epithelium within the pouch is probably stratified. The most conspicuous cell type is tall columnar cells, typically containing small cytoplasmic granules and a large inclusion. Cells with similar cytoplasmic characteristics, thought to be photogenic cells, are present in the epidermal skin photophores in other selachians which are known to be luminous.  相似文献   

16.
The anterolateral eye, the posterolateral eye and the posteromedial eye of the web-building spider, Argiope amoena have been examined by light and electron microscopy. The dioptric apparatus of all three eyes is similar in structure, and consists of a cornea, a lens and a vitreous body. The retina contains monopolar receptor cells, the cell bodies of which are present beneath the vitreous body in all three eyes. Proximal processes of the receptor cells form rhabdoms beneath the cell body layer and then extend toward the first optic glomerulus as an ocellar nerve. Two distinct patterns of retinal organization are present in the three eyes. In one type the rhabdomic layer of the retina is backed by a pigmented layer. In the other type the rhabdomic layer is backed by a tapetal reflecting layer. Rhabdomic structure and cytoplasmic inclusions of the receptor cells differ greatly between the two types. The anterolateral eye possesses a single type of retina with the rhabdoms backed by the tapetum. Both the posterolateral and the posteromedial eye are similar in structure, each possessing beneath the common dioptric apparatus retinae of both types.  相似文献   

17.
Two specimens of the peculiar squalid shark,Trigonognathus kabeyai gen. et sp. nov., were collected from the coastal waters of Wakayama and Tokushima, Japan, by bottom trawl at depths of 330 and 360 meters. Shape of teeth similar in both jaws; slender, unicuspid, canine-like, without any cusplets or serrations, with weak thin fold on both lingual and labial sides in anterior teeth on both jaws; tooth at symphysis of each jaw longest. Interspace between teeth very wide. Both jaws triangular in shape. Most of dermal denticles on body and head roughly rhombic, swollen very much near central part, with about 10–40 facets on the dorsal surface of its crown. Preoral snout length very short. Many small organs considered to be photophores present mainly on ventral surfaces of head and body.  相似文献   

18.
Chaetognaths mainly keep to a preferred depth range by movement and resistance achieved by body shape. Some species, for exampleSagitta lyra andS. hexaptera, developed conspicuous, voluminous, gelatinous inner parts in the lateral fins. These are considered an aid toward buoyancy, as they compensate the increasing density caused by maturing gonads. Probably, the small size of the sexual organs ofS. enflata can also be regarded as a buoyancy adaptation. Member of the Taxonomy Group at the Biologische Anstalt Helgoland  相似文献   

19.
Meloche CG  Knox JP  Vaughn KC 《Planta》2007,226(2):485-498
A cortical band of fiber cells originate de novo in tendrils of redvine [Brunnichia ovata (Walt.) Shiners] when these convert from straight, supple young filaments to stiffened coiled structures in response to touch stimulation. We have analyzed the cell walls of these fibers by in situ localization techniques to determine their composition and possible role(s) in the coiling process. The fiber cell wall consists of a primary cell wall and two lignified secondary wall layers (S1 and S2) and a less lignified gelatinous (G) layer proximal to the plasmalemma. Compositionally, the fibers are sharply distinct from surrounding parenchyma as determined by antibody and affinity probes. The fiber cell walls are highly enriched in cellulose, callose and xylan but contain no homogalacturonan, either esterified or de-esterified. Rhamnogalacturonan-I (RG-I) epitopes are not detected in the S layers, although they are in both the gelatinous layer and primary wall, indicating a further restriction of RG-I in the fiber cells. Lignin is concentrated in the secondary wall layers of the fiber and the compound middle lamellae/primary cell wall but is absent from the gelatinous layer. Our observations indicate that these fibers play a central role in tendril function, not only in stabilizing its final shape after coiling but also generating the tensile strength responsible for the coiling. This theory is further substantiated by the absence of gelatinous layers in the fibers of the rare tendrils that fail to coil. These data indicate that gelatinous-type fibers are responsible for the coiling of redvine tendrils and a number of other tendrils and vines.  相似文献   

20.
Krönström, J. and Mallefet, J. 2009. Evidence for a widespread involvement of NO in control of photogenesis in bioluminescent fish. —Acta Zoologica (Stockholm) 91 : 474–483. The presence of nitric oxide synthase (NOS) and nerve fibres in the photophores of seven bioluminescent fish species (Hygophum benoiti, Myctophum punctatum, Electrona risso, Cyclothone braueri, Vinciguerria attenuata, Maurolicus muelleri and Porichthys notatus) with endogenous photocytes, were investigated. Antibodies directed against neuronal and inducible NOS (n and iNOS respectively) and NADPH‐diaphorase activity were used to reveal the locations of NOS, while antibodies directed against acetylated tubulin were used to visualize nerve fibres. The nNOS antibody labelled structures in all investigated photophores except in the organs from P. notatus. The photocytes of P. notatus showed NADPH‐diaphorase activity. In the myctophid species, NOS‐like immunoreactivity was found in small intracellular structures of the photocytes and in nerve fibres reaching the photocytes. nNOS‐positive fibres were also found among lens/filter cells in V. attenuata, and in M. muelleri the cytoplasm of lens/filter cells contained NOS‐like material. In C. braueri, a cell type located at a collecting chamber for luminous products in the photophore contained NOS‐like material. All photophores received an innervation reaching the photocytes, as well as other components including lens/filter areas. The results of this study comply with an involvement of nitric oxide in the control of bioluminescence in several fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号