首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) GP64 envelope glycoprotein is essential for virus entry and plays an important role in virion budding. An AcMNPV construct that contains a deletion of the gp64 gene is unable to propagate infection from cell to cell, and this defect results from both a severe reduction in the production of budded virions and the absence of GP64 on virions. In the current study, we examined GP64 proteins containing N- and C-terminal truncations of the ectodomain and identified a minimal construct capable of targeting the truncated GP64 to budded virions. The minimal budding and targeting construct of GP64 contained 38 amino acids from the mature N terminus of the GP64 ectodomain and 52 amino acids from the C terminus of GP64. Because the vesicular stomatitis virus (VSV) G protein was previously found to rescue infectivity of a gp64null AcMNPV, we also examined a small C-terminal construct of the VSV G protein. We found that a construct containing 91 amino acids from the C terminus of VSV G (termed G-stem) was capable of rescuing AcMNPV gp64null virion budding to wild-type (wt) or nearly wt levels. We also examined the display of chimeric proteins on the gp64null AcMNPV virion. By generating viruses that expressed chimeric influenza virus hemagglutinin (HA) proteins containing the GP64 targeting domain and coinfecting those viruses with a virus expressing the G-stem construct, we demonstrated enhanced display of the HA protein on gp64null AcMNPV budded virions. The combined use of gp64null virions, VSV G-stem-enhanced budding, and GP64 domains for targeting heterologous proteins to virions should be valuable for biotechnological applications ranging from targeted transduction of mammalian cells to vaccine production.  相似文献   

2.
Li Z  Blissard GW 《Journal of virology》2008,82(7):3329-3341
GP64, the major envelope glycoprotein of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) budded virion, is important for host cell receptor binding and mediates low-pH-triggered membrane fusion during entry by endocytosis. In the current study, we examined the functional role of the AcMNPV GP64 transmembrane (TM) domain by replacing the 23-amino-acid GP64 TM domain with corresponding TM domain sequences from a range of viral and cellular type I membrane proteins, including Orgyia pseudotsugata MNPV (OpMNPV) GP64 and F, thogotovirus GP75, Lymantria dispar MNPV (LdMNPV) F, human immunodeficiency virus type 1 (HIV-1) GP41, human CD4 and glycophorin A (GpA), and influenza virus hemagglutinin (HA), and with a glycosylphosphatidylinositol (GPI) anchor addition sequence. In transient expression experiments with Sf9 cells, chimeric GP64 proteins containing either a GPI anchor or TM domains from LdMNPV F or HIV-1 GP41 failed to localize to the cell surface and thus appear to be incompatible with either GP64 structure or cell transport. All of the mutant constructs detected at the cell surface mediated hemifusion (outer leaflet merger) upon low-pH treatment, but only those containing TM domains from CD4, GpA, OpMNPV GP64, and thogotovirus GP75 mediated pore formation and complete membrane fusion activity. This supports a model in which partial fusion (hemifusion) proceeds by a mechanism that is independent of the TM domain and the TM domain participates in the enlargement or expansion of fusion pores after hemifusion. GP64 proteins containing heterologous TM domains mediated virion budding with dramatically differing levels of efficiency. In addition, chimeric GP64 proteins containing TM domains from CD4, GpA, HA, and OpMNPV F were incorporated into budded virions but were unable to rescue the infectivity of a gp64 null virus, whereas those with TM domains from OpMNPV GP64 and thogotovirus GP75 rescued infectivity. These results show that in addition to its basic role in membrane anchoring, the GP64 TM domain is critically important for GP64 trafficking, membrane fusion, virion budding, and virus infectivity. These critical functions were replaced only by TM domains from related viral membrane proteins.  相似文献   

3.
GP64, the major envelope glycoprotein of budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), is involved in viral attachment, mediates membrane fusion during virus entry, and is required for efficient virion budding. Thus, GP64 is essential for viral propagation in cell culture and in animals. Recent genome sequences from a number of baculoviruses show that only a subset of closely related baculoviruses have gp64 genes, while other baculoviruses have a recently discovered unrelated envelope protein named F. F proteins from Lymantria dispar MNPV (LdMNPV) and Spodoptera exigua MNPV (SeMNPV) mediate membrane fusion and are therefore thought to serve roles similar to that of GP64. To determine whether F proteins are functionally analogous to GP64 proteins, we deleted the gp64 gene from an AcMNPV bacmid and inserted F protein genes from three different baculoviruses. In addition, we also inserted envelope protein genes from vesicular stomatitis virus (VSV) and Thogoto virus. Transfection of the gp64-null bacmid DNA into Sf9 cells does not generate infectious particles, but this defect was rescued by introducing either the F protein gene from LdMNPV or SeMNPV or the G protein gene from VSV. These results demonstrate that baculovirus F proteins are functionally analogous to GP64. Because baculovirus F proteins appear to be more widespread within the family and are much more divergent than GP64 proteins, gp64 may represent the acquisition of an envelope protein gene by an ancestral baculovirus. The AcMNPV pseudotyping system provides an efficient and powerful method for examining the functions and compatibilities of analogous or orthologous viral envelope proteins, and it could have important biotechnological applications.  相似文献   

4.
The baculovirus gp64 envelope glycoprotein is a major component of the envelope of the budded virus (BV) and is involved in BV entry into the host cell by endocytosis. To determine whether gp64 alone was sufficient to mediate membrane fusion, the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus gp64 protein was transiently expressed in uninfected insect cells. Cells expressing the baculovirus gp64 protein were examined for membrane fusion activity by using a syncytium formation assay under various conditions of exposure to low pH. Cells expressing the gp64 protein mediated membrane fusion and syncytium formation in a pH-dependent manner. A pH of 5.5 or lower was required to induce membrane fusion. In addition, exposure of gp64-expressing cells to low pH for as little as 5 s was sufficient to induce gp64-mediated syncytium formation. These studies provide direct evidence that gp64 is a pH-dependent membrane fusion protein and suggest that gp64 is the protein responsible for fusion of the virion envelope with the endosome membrane during BV entry into the host cell by endocytosis.  相似文献   

5.
Recombinant baculovirus particles displaying green fluorescent protein (GFP) fused to the major envelope glycoprotein gp64 of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) were characterized by fluorescence correlation spectroscopy (FCS). FCS detected Brownian motion of single, intact recombinant baculovirus display particles with a diffusion coefficient (D) of (2.89 +/- 0.74) x 10(-8) cm2s(-1) and an apparent hydrodynamic radius of 83.35 +/- 21.22 nm. In the presence of sodium dodecyl sulfate (SDS), Triton X-100, and octylglucoside, the diffusion time was reduced to the 0.2 ms range (D = 7.57 x 10(-7) cm2s(-1)), showing that the fusion proteins were anchored in the viral envelope. This allowed for a calculation of the number of single gp64 fusion proteins incorporated in the viral membrane. A mean value of 3.2 fluorescent proteins per virus particle was obtained. Our results show that FCS is the method of choice for studying enveloped viruses such as a display virus with one component being GFP.  相似文献   

6.
杆状病毒表面展示系统是近几年发展起来的一种新的真核展示系统 ,通过在病毒衣壳蛋白gp6 4插入外源肽、二者融合表达或与特异性的锚定部位结合 ,在病毒表面进行融合表达而筛选出目的活性肽或蛋白。可用来展示需糖基化、二硫键异构化等翻译后修饰才表现功能活性的复杂真核蛋白及构建多肽文库、抗体库等。本文简述了该技术的原理、研究进展、应用及发展前景等。可以预见 ,杆状病毒表面展示技术的发展必将对生命科学及相关领域的发展产生深远的影响  相似文献   

7.
To demonstrate the essential nature of the baculovirus GP64 envelope fusion protein (GP64 EFP) and to further examine the role of this protein in infection, we inactivated the gp64 efp gene of Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) and examined the biological properties of this virus in vivo. To provide GP64 EFP during construction of the recombinant GP64 EFP-null AcMNPV baculovirus, we first generated a stably transfected insect cell line (SfpOP64-6) that constitutively expressed the GP64 EFP of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV). The AcMNPV gp64 efp gene was inactivated by inserting the bacterial lacZ gene in frame after codon 131 of the gp64 efp gene. The inactivated gp64 gene was cloned into the AcMNPV viral genome by replacement of the wild-type gp64 efp locus. When propagated in the stably transfected insect cells (Sf9OP64-6 cells), budded virions produced by the recombinant AcMNPV GP64 EFP-null virus (vAc64z) contained OpMNPV GP64 EFP supplied by the Sf9OP64-6 cells. Virions propagated in Sf9OP64-6 cells were capable of infecting wild-type Sf9 cells, and cells infected by vAc64z exhibited a blue phenotype in the presence of X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside). Using cytochemical staining to detect vAc64z infected cells, we demonstrated that this GP64 EFP-null virus is defective in cell-to-cell propagation in cell culture. Although defective in cell-to-cell propagation, vAc64z produces occlusion bodies and infectious occlusion-derived virions within the nucleus. Occlusion bodies collected from cells infected by vAc64z were infectious to midgut epithelial cells of Trichoplusia ni larvae. However, in contrast to infection by a control virus, infection by vAc64z did not proceed into the hemocoel. Analysis of vAc64z occlusion bodies in a standard neonate droplet feeding assay showed no virus-induced mortality, indicating that occluded virions produced from vAc64z could not initiate a productive (lethal) infection in neonate larvae. Thus, GP64 EFP is an essential virion structural protein that is required for propagation of the budded virus from cell to cell and for systemic infection of the host insect.  相似文献   

8.
Viral envelope fusion proteins are important structural proteins that mediate viral entry and may affect or determine the host range of a virus. The acquisition, exchange, and evolution of such envelope proteins may dramatically affect the success and evolutionary divergence of viruses. In the family Baculoviridae, two very different envelope fusion proteins have been identified. Budded virions of group I nucleopolyhedroviruses (NPVs) such as the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), contain the essential GP64 envelope fusion protein. In contrast group II NPVs and granuloviruses have no gp64 gene but instead encode a different envelope protein called F. F proteins from group II NPVs can functionally substitute for GP64 in gp64null AcMNPV viruses, indicating that GP64 and these F proteins serve a similar functional role. Interestingly, AcMNPV (and other gp64-containing group I NPVs) also contain an F gene homolog (Ac23) but the AcMNPV F homolog cannot compensate for the loss of gp64. In the present study, we show that Ac23 is expressed and is found in budded virions. To examine the function of F protein homologs from the gp64-containing baculoviruses, we generated an Ac23null AcMNPV genome by homologous recombination in E. coli. We found that Ac23 was not required for viral replication or pathogenesis in cell culture or infected animals. However, Ac23 accelerated the mortality of infected insect hosts by approximately 28% or 26 h. Thus, Ac23 represents an important viral pathogenicity factor in larvae infected with AcMNPV.  相似文献   

9.
Yin F  Wang M  Tan Y  Deng F  Vlak JM  Hu Z  Wang H 《Journal of virology》2008,82(17):8922-8926
The envelope fusion protein F of Plutella xylostella granulovirus is a computational analogue of the GP64 envelope fusion protein of Autographa californica nucleopolyhedrovirus (AcMNPV). Granulovirus (GV) F proteins were thought to be unable to functionally replace GP64 in the AcMNPV pseudotyping system. In the present study the F protein of Agrotis segetum GV (AgseGV) was identified experimentally as the first functional GP64 analogue from GVs. AgseF can rescue virion propagation and infectivity of gp64-null AcMNPV. The AgseF-pseudotyped AcMNPV also induced syncytium formation as a consequence of low-pH-induced membrane fusion.  相似文献   

10.
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein is an essential virion protein that is involved in both receptor binding and membrane fusion during viral entry. Genetic studies have shown that GP64-null viruses are unable to move from cell to cell and this results from a defect in the assembly and production of budded virions (BV). To further examine requirements for virion budding, we asked whether a GP64-null baculovirus, vAc(64-), could be pseudotyped by introducing a heterologous viral envelope protein (vesicular stomatitis virus G protein [VSV-G]) into its membrane and whether the resulting virus was infectious. To address this question, we generated a stably transfected insect Sf9 cell line (Sf9(VSV-G)) that inducibly expresses the VSV-G protein upon infection with AcMNPV Sf9(VSV-G) and Sf9 cells were infected with vAc(64-), and cells were monitored for infection and for movement of infection from cell to cell. vAc(64-) formed plaques on Sf9(VSV-G) cells but not on Sf9 cells, and plaques formed on Sf9(VSV-G) cells were observed only after prolonged intervals. Passage and amplification of vAc(64-) on Sf9(VSV-G) cells resulted in pseudotyped virus particles that contained the VSV-G protein. Cell-to-cell propagation of vAc(64-) in the G-expressing cells was delayed in comparison to wild-type (wt) AcMNPV, and growth curves showed that pseudotyped vAc(64-) was generated at titers of approximately 10(6) to 10(7) infectious units (IU)/ml, compared with titers of approximately 10(8) IU/ml for wt AcMNPV. Propagation and amplification of pseudotyped vAc(64-) virions in Sf9(VSV-G) cells suggests that the VSV-G protein may either possess the signals necessary for baculovirus BV assembly and budding at the cell surface or may otherwise facilitate production of infectious baculovirus virions. The functional complementation of GP64-null viruses by VSV-G protein was further demonstrated by identification of a vAc(64-)-derived virus that had acquired the G gene through recombination with Sf9(VSV-G) cellular DNA. GP64-null viruses expressing the VSV-G gene were capable of productive infection, replication, and propagation in Sf9 cells.  相似文献   

11.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can infect a variety of mammalian cells, as well as insect cells, facilitating its use as a viral vector for gene delivery into mammalian cells. Glycoprotein gp64, a major component of the budded AcMNPV envelope, is involved in viral entry into cells by receptor-mediated endocytosis and subsequent membrane fusion. We examined the potential production of pseudotype baculovirus particles transiently carrying ligands of interest in place of gp64 as a method of ligand-directed gene delivery into target cells. During amplification of a gp64-null pseudotype baculovirus carrying a green fluorescent protein gene in gp64-expressing insect cells, however, we observed the high-frequency appearance of a replication-competent virus incorporating the gp64 gene into the viral genome. To avoid generation of replication-competent revertants, we prepared pseudotype baculoviruses by transfection with recombinant bacmids without further amplification in the gp64-expressing cells. We constructed gp64-null recombinant bacmids carrying cDNAs encoding either vesicular stomatitis virus G protein (VSVG) or measles virus receptors (CD46 or SLAM). The VSVG pseudotype baculovirus efficiently transduced a reporter gene into a variety of mammalian cell lines, while CD46 and SLAM pseudotype baculoviruses allowed ligand-receptor-directed reporter gene transduction into target cells expressing measles virus envelope glycoproteins. Gene transduction mediated by the pseudotype baculoviruses could be inhibited by pretreatment with specific antibodies. These results indicate the possible application of pseudotype baculoviruses in ligand-directed gene delivery into target cells.  相似文献   

12.
Zhang Y  Lv Z  Chen J  Chen Q  Quan Y  Kong L  Zhang H  Li S  Zheng Q  Chen J  Nie Z  Wang J  Jin Y  Wu X 《Proteomics》2008,8(20):4178-4185
We have developed a novel baculovirus surface display (BVSD) system for the isolation of membrane proteins. We expressed a reporter gene that encoded hemagglutinin gene fused in frame with the signal peptide and transmembrane domain of the baculovirus gp64 protein, which is displayed on the surface of BmNPV virions. The expression of this fusion protein on the virion envelope allowed us to develop two methods for isolating membrane proteins. In the first method, we isolated proteins directly from the envelope of budding BmNPV virions. In the second method, we isolated proteins from cellular membranes that had disintegrated due to viral egress. We isolated 6756 proteins. Of these, 1883 have sequence similarities to membrane proteins and 1550 proteins are homologous to known membrane proteins. This study indicates that membrane proteins can be effectively isolated using our BVSD system. Using an analogous method, membrane proteins can be isolated from other eukaryotic organisms, including human beings, by employing a host cell-specific budding virus.  相似文献   

13.
家蚕核型多角体病毒gp64基因的克隆和全序列测定   总被引:2,自引:0,他引:2  
:Bm NPV gp64 基因在杆状病毒分子生物学和杆状病毒表达系统研究中具有重要的作用,以AcMNPV gp64 基因为探针,杂交显示Bm NPV gp64 基因定位于其基因组Bam HI酶切的4 .2kb 和7-4kb 片段上,克隆阳性片段,重组质粒分别命名为pZDBM42 和pZDBM74 。对重组质粒进一步杂交,将片断更精确定位于0-45kb 片段、0-75kb 片断上和1-15kb 片断上,将三个片断DNA 进行序列分析,结果表明:Bm NPV 的gp64 基因的开放阅读框(ORF) 有1530 核苷酸,编码509 个氨基酸。序列同源性比较显示,Bm NPV gp64 基因和AcMNPVgp64 基因的核苷酸序列同源性达84-3 % ,氨基酸序列同源性达94-7 % 。Bm NPV gp64 基因C 端的信号肽序列和N 端的锚定序列对于Bm NPV 表达系统的改进具有重要的意义。  相似文献   

14.
Long G  Pan X  Westenberg M  Vlak JM 《Journal of virology》2006,80(22):11226-11234
F proteins from baculovirus nucleopolyhedrovirus (NPV) group II members are the major budded virus (BV) viral envelope fusion proteins. They undergo furin-like proteolysis processing in order to be functional. F proteins from different baculovirus species have a long cytoplasmic tail domain (CTD), ranging from 48 (Spodoptera litura multicapsid NPV [MNPV]) to 78 (Adoxophyes honmai NPV) amino acid (aa) residues, with a nonassigned function. This CTD is much longer than the CTD of GP64-like envelope fusion proteins (7 aa), which appear to be nonessential for BV infectivity. Here we have investigated the functional role of the CTD of Helicoverpa armigera single-capsid NPV (HearNPV), a group II NPV. We combined a newly constructed HearNPV f-null bacmid knockout-repair system and an Autographa californica MNPV (AcMNPV) gp64-null bacmid knockout-pseudotype system with mutation and rescue experiments to study the functional role of the baculovirus F protein CTD. We show that except for the 16 C-terminal aa, the HearNPV F CTD is essential for virus spread from cell to cell. In addition, the CTD of HearNPV F is involved in BV production in a length-dependent manner and is essential for BV infectivity. The tyrosine residue Y658, located 16 aa from the C terminus, seems to be critical. However, HearNPV F without a CTD still rescues the infectivity of gp64-null AcMNPV BV, indicating that the CTD is not involved in processing and fusogenicity. Altogether, our results indicate that the F protein is essential for baculovirus BV infectivity and that the CTD is important for F protein incorporation into BV.  相似文献   

15.
The ability of a recombinant baculovirus containing the ectodomain of the mature sequence of glycoprotein D (gD) fused to the amino-terminus of baculoviral glycoprotein gp64 to display gD on its surface and to serve as an improved immunogen against bovine herpesvirus-1 was tested. The gD–gp64 fusion protein was correctly expressed on the virus particles as revealed by immunomicroscopy assays. Mice immunized with 5 × 108 plaque forming units developed antibodies that specifically reacted in an enzyme-linked immunosorbent assay with recombinant gD and whole bovine herpesvirus-1. These antibodies were able to neutralize bovine herpesvirus-1 in vitro, whereas those elicited by a version of gD expressed in Escherichia coli did not. Our data demonstrated that the display on the virion surface of recombinant baculovirus can provide a tool for the development of recombinant vaccines against bovine herpesvirus-1.  相似文献   

16.
Enveloped virus entry into host cells is typically initiated by an interaction between a viral envelope glycoprotein and a host cell receptor. For budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, the envelope glycoprotein GP64 is involved in host cell receptor binding, and GP64 is sufficient to mediate low-pH-triggered membrane fusion. To better define the role of GP64 in receptor binding, we generated and characterized a panel of antisera against subdomains of GP64. Eight subdomain-specific antisera were generated, and their reactivities with GP64 proteins and neutralization of virus infectivity and binding were examined. Antibodies directed against the N-terminal region of GP64 (amino acids 21 to 159) showed strong neutralization of infectivity and effectively inhibited binding of (35)S-labeled budded virions to Sf9 cells. In addition, we generated virions displaying truncated GP64 constructs. A construct displaying the N-terminal 274 amino acids (residues 21 to 294) of the ectodomain was sufficient to mediate virion binding. Additional studies of antisera directed against small subdomains revealed that an antiserum against a 40-amino-acid region (residues 121 to 160) neutralized virus infectivity. Site-directed mutagenesis was subsequently used for functional analysis of that region. Recombinant viruses expressing GP64 proteins with single amino acid substitutions within amino acids 120 to 124 and 142 to 148 replicated to high titers, suggesting that those amino acids were not critical for receptor binding or other important GP64 functions. In contrast, GP64 proteins with single amino acid substitutions of residues 153 and 156 were unable to substitute for wild-type GP64 and did not rescue a gp64 knockout virus. Further analysis showed that these substitutions substantially reduced binding of recombinant virus to Sf9 cells. Thus, the amino acid region from positions 21 to 159 was identified as a putative receptor binding domain, and amino acids 153 and 156 appear to be important for receptor binding.  相似文献   

17.
Baculovirus GP64 is a low-pH-dependent membrane fusion protein required for virus entry and cell-to-cell transmission. Recently, GP64 has generated interest for practical applications in mammalian systems. Here we examined the membrane fusion function of GP64 from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressed in mammalian cells, as well as its capacity to functionally complement a mammalian virus, human respiratory syncytial virus (HRSV). Both authentic GP64 and GP(64/F), a chimeric protein in which the GP64 cytoplasmic tail domain was replaced with the 12 C-terminal amino acids of the HRSV fusion (F) protein, induced low-pH-dependent cell-cell fusion when expressed transiently in HEp-2 (human) cells. Levels of surface expression and syncytium formation were substantially higher at 33 degrees C than at 37 degrees C. The open reading frames (ORFs) encoding GP64 or GP(64/F), along with two marker ORFs encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS), were used to replace all three homologous transmembrane glycoprotein ORFs (small hydrophobic SH, attachment G, and F) in a cDNA of HRSV. Infectious viruses were recovered that lacked the HRSV SH, G, and F proteins and expressed instead the GP64 or GP(64/F) protein and the two marker proteins GFP and GUS. The properties of these viruses, designated RSDeltaSH,G,F/GP64 or RSDeltaSH,G,F/GP(64/F), respectively, were compared to a previously described HRSV expressing GFP in place of SH but still containing the wild-type HRSV G and F proteins (RSDeltaSH [A. G. Oomens, A. G. Megaw, and G. W. Wertz, J. Virol., 77:3785-3798, 2003]). By immunoelectron microscopy, the GP64 and GP(64/F) proteins were shown to incorporate into HRSV-induced filaments at the cell surface. Antibody neutralization, ammonium chloride inhibition, and replication levels in cell culture showed that both GP64 proteins efficiently mediated infectivity of the respective viruses in a temperature-sensitive, low-pH-dependent manner. Furthermore, RSDeltaSH,G,F/GP64 and RSDeltaSH,G,F/GP(64/F) replicated to higher levels and had significantly higher stability of infectivity than HRSVs containing the homologous HRSV G and F proteins. Thus, GP64 and a GP64/HRSV F chimeric protein were functional and efficiently complemented an unrelated human virus in mammalian cells, producing stable, infectious virus stocks. These results demonstrate the potential of GP64 for both practical applications requiring stable pseudotypes in mammalian systems and for studies of viral glycoprotein requirements in assembly and pathogenesis.  相似文献   

18.
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), the type species of the Nucleopolyhedrovirus genus (Baculoviridae family), has two highly unusual traits shared by several baculovirus species. First, the occlusion-derived virus (ODV) that establishes primary infection in the midgut following its ingestion by host larvae contains multiple nucleocapsids, all of which enter the same midgut cell. Second, GP64, the envelope fusion protein of the budded virus (BV) that spreads infection beyond the midgut, is synthesized both early and late during infection. We tested the hypothesis that, together, these two traits enable parental ODV nucleocapsids to bud from infected midgut cells, essentially as BV, to establish secondary infections prior to completion of viral replication within the midgut. This "pass-through" strategy would enable the virus to counter the host's principal defense, sloughing of infected midgut cells, by accelerating the onset of systemic infections. To test this hypothesis, we created an AcMNPV recombinant, AcLate21/20-64HB, that can express gp64 only during the late phase of infection (coincident with the other structural proteins). We then compared the virulence of this virus to that of a control recombinant virus that expresses gp64 in a wild-type manner. We found that when administered orally, the control virus was far more virulent and established secondary infection earlier than AcLate21/20-64HB, but when administered intrahemocoelically, infectivity and virulence of the two recombinants were identical. Our results demonstrate that early gp64 expression is a key component of a unique and highly adaptive baculovirus infection strategy.  相似文献   

19.
To create a tool for eukaryotic surface display, this approach is aimed at demonstrating a direct modification of the native envelope protein gp64 of Autographa californica NPV without disturbing viral infectivity. Short affinity-tag peptides, the biotin mimic streptagII, and the gp41 amino-acid motif ELDKWA of HIV-1, specific for the human monoclonal antibody 2F5, were engineered into the baculovirus major coat protein gp64 and presented on the viral surface. Two different streptag peptides were inserted at the naturally occurring NotI site at amino-acid 278 of gp64. Additionally, the ten-amino-acid peptide GG-ELDKWA-GG, containing the epitope of mAb 2F5, was introduced into gp64 envelope protein at the same position. In all cases we were able to propagate viable virus-achieving infectious titers in the range of wild-type AcMNPV. Streptag and ELDKWA-epitope surface localization on purified virus particles was demonstrated by flow cytometry and Western blot analysis. We could also show selective retention of mutant viruses by specific interaction between chimeric virions and their target counterparts, recognizing the epitope or the streptag peptide in the viral envelope. These data provide evidence that altering the surface properties of the baculovirus virion could be of value in improving baculovirus display technology and developing new applications.  相似文献   

20.
The envelope protein gp64 of the baculovirus Autographa californica nuclear polyhedrosis virus is essential for viral entry into insect cells, as the glycoprotein both mediates pH-dependent membrane fusion and binds to host cell receptors. Surface modification of baculovirus particles by genetic engineering of gp64 has been demonstrated by various strategies and thus has become an important and powerful tool in molecular biology. To improve further the presentation of peptides on the surface of baculovirus particles, several insertion sites within the gp64 envelope protein were selected by their theoretical maximum surface probability and investigated for efficient peptide presentation. The ELDKWA peptide of the gp41 of HIV-1, specific for the human mAb 2F5, was inserted into 17 different positions of the glycoprotein gp64. Propagation of viruses was successful in 13 cases, mutagenesis at four positions did not result in production of intact virus particles. Western blotting, FACS analysis and ELISA were used for characterization of the different binding properties of the mutants. Insertion of this peptide into the native envelope protein resulted in high avidity display on the surface of baculovirus particles. This approach offers the possibility of effective modification of surface properties in regard to host range specificity and antigen display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号