首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminus of the Na+,K+-ATPase α-subunit shows some homology to that of Shaker-B K+ channels; the latter has been shown to mediate the N-type channel inactivation in a ball-and-chain mechanism. When the Torpedo Na+,K+-ATPase is expressed in Xenopus oocytes and the pump is transformed into an ion channel with palytoxin (PTX), the channel exhibits a time-dependent inactivation gating at positive potentials. The inactivation gating is eliminated when the N-terminus is truncated by deleting the first 35 amino acids after the initial methionine. The inactivation gating is restored when a synthetic N-terminal peptide is applied to the truncated pumps at the intracellular surface. Truncated pumps generate no electrogenic current and exhibit an altered stoichiometry for active transport. Thus, the N-terminus of the α-subunit appears to act like an inactivation gate and performs a critical step in the Na+,K+-ATPase pumping function.  相似文献   

2.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

3.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

4.
Clathrin-dependent endocytosis of Na(+),K(+)-ATPase molecules in response to G protein-coupled receptor signals is triggered by phosphorylation of the alpha-subunit and the binding of phosphoinositide 3-kinase. In this study, we describe a molecular mechanism linking phosphorylation of Na(+),K(+)-ATPase alpha-subunit to binding and activation of phosphoinositide 3-kinase. Co-immunoprecipitation studies, as well as experiments using confocal microscopy, revealed that dopamine favored the association of 14-3-3 protein with the basolateral plasma membrane and its co-localization with the Na(+),K(+)-ATPase alpha-subunit. The functional relevance of this interaction was established in opossum kidney cells expressing a 14-3-3 dominant negative mutant, where dopamine failed to decrease Na(+),K(+)-ATPase activity and to promote its endocytosis. The phosphorylated Ser-18 residue within the alpha-subunit N terminus is critical for 14-3-3 binding. Activation of phosphoinositide 3-kinase by dopamine during Na(+),K(+)-ATPase endocytosis requires the binding of the kinase to a proline-rich domain within the alpha-subunit, and this effect was blocked by the presence of a 14-3-3 dominant negative mutant. Thus, the 14-3-3 protein represents a critical linking mechanism for recruiting phosphoinositide 3-kinase to the site of Na(+),K(+)-ATPase endocytosis.  相似文献   

5.
Dopamine (DA) increases Na(+),K(+)-ATPase activity in lung alveolar epithelial cells. This effect is associated with an increase in Na(+),K(+)-ATPase molecules within the plasma membrane (). Analysis of Na(+),K(+)-ATPase motion was performed in real-time in alveolar cells stably expressing Na(+),K(+)-ATPase molecules carrying a fluorescent tag (green fluorescent protein) in the alpha-subunit. The data demonstrate a distinct (random walk) pattern of basal movement of Na(+),K(+)-ATPase-containing vesicles in nontreated cells. DA increased the directional movement (by 3.5 fold) of the vesicles and an increase in their velocity (by 25%) that consequently promoted the incorporation of vesicles into the plasma membrane. The movement of Na(+),K(+)-ATPase-containing vesicles and incorporation into the plasma membrane were microtubule dependent, and disruption of this network perturbed vesicle motion toward the plasma membrane and prevented the increase in the Na(+),K(+)-ATPase activity induced by DA. Thus, recruitment of new Na(+),K(+)-ATPase molecules into the plasma membrane appears to be a major mechanism by which dopamine increases total cell Na(+),K(+)-ATPase activity.  相似文献   

6.
Many populations of Arctic char (Salvelinus alpinus) are land-locked, physically separated from the ocean by natural barriers and unable to migrate to sea like anadromous populations. Previous studies which experimentally transferred land-locked Arctic char to seawater report high mortality rates due to osmoregulatory failure and an inability to up-regulate gill Na(+),K(+)-ATPase activity. This study examined the mRNA expression of two recently discovered alpha-subunit isoforms of gill Na(+)K(+)-ATPase (alpha1a and alpha1b) during seawater exposure of land-locked Arctic char. mRNA levels of these gill Na(+),K(+)-ATPasealpha-subunit isoforms were compared to Na(+),K(+)-ATPase activity and protein levels and related to osmoregulatory performance. Land-locked Arctic char were unable to regulate plasma osmolality following seawater exposure. Seawater exposure did not induce an increase in gill Na(+),K(+)-ATPase activity or protein levels. Na(+),K(+)-ATPase isoform alpha1a mRNA quickly decreased upon exposure to seawater, while isoform alpha1b levels were unchanged. These results suggest the inability of land-locked Arctic char to acclimate to seawater is due a failure to up-regulate gill Na(+),K(+)-ATPase activity which may be due to their inability to increase Na(+),K(+)-ATPase alpha1b mRNA expression.  相似文献   

7.
Palytoxin (PTX) induces a cation channel through interaction with Na(+),K(+)-ATPase. It is unclear how this action relates to the enzyme catalytic activity. We examined whether the action of PTX depends on the catalytic domain specific for Na(+),K(+)-ATPase. Wild-type Na(+),K(+)-ATPase alpha-subunit (NNN) or its chimera (NCN), in which the catalytic domain was replaced with that of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase, was co-expressed with beta-subunit in the yeast Saccharomyces cerevisiae. PTX (0.1-100 nM) increased K(+) efflux in NNN- or NCN-transfected cells to a similar degree but not in non-transfected cells. When ouabain-resistant NNN and NCN were expressed, PTX also increased K(+) efflux. Ouabain inhibited the effect of PTX in NNN or NCN cells but not in ouabain-resistant cells. These data suggest that the channel-forming action of PTX does not depend on the catalytic domain species.  相似文献   

8.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

9.
Gamel K  Torre V 《Biophysical journal》2000,79(5):2475-2493
The permeability ratio between K(+) and Na(+) ions in cyclic nucleotide-gated channels is close to 1, and the single channel conductance has almost the same value in the presence of K(+) or Na(+). Therefore, K(+) and Na(+) ions are thought to permeate with identical properties. In the alpha-subunit from bovine rods there is a loop of three prolines at positions 365 to 367. When proline 365 is mutated to a threonine, a cysteine, or an alanine, mutant channels exhibit a complex interaction between K(+) and Na(+) ions. Indeed K(+), Rb(+) and Cs(+) ions do not carry any significant macroscopic current through mutant channels P365T, P365C and P365A and block the current carried by Na(+) ions. Moreover in mutant P365T the presence of K(+) in the intracellular (or extracellular) medium caused the appearance of a large transient inward (or outward) current carried by Na(+) when the voltage command was quickly stepped to large negative (or positive) membrane voltages. This transient current is caused by a transient potentiation, i.e., an increase of the open probability. The permeation of organic cations through these mutant channels is almost identical to that through the wild type (w.t.) channel. Also in the w.t. channel a similar but smaller transient current is observed, associated to a slowing down of the channel gating evident when intracellular Na(+) is replaced with K(+). As a consequence, a rather simple mechanism can explain the complex behavior here described: when a K(+) ion is occupying the pore there is a profound blockage of the channel and a potentiation of gating immediately after the K(+) ion is driven out. Potentiation occurs because K(+) ions slow down the rate constant K(off) controlling channel closure. These results indicate that K(+) and Na(+) ions do not permeate through CNG channels in the same way and that K(+) ions influence the channel gating.  相似文献   

10.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

11.
Charge translocation by Na(+),K(+)-ATPase was investigated by adsorbing membrane fragments containing Na(+),K(+)-ATPase from pig kidney on a solid supported membrane (SSM). Upon adsorption, the ion pumps were activated by performing ATP concentration jumps at the surface of the SSM, and the capacitive current transients generated by Na(+),K(+)-ATPase were measured under potentiostatic conditions. To study the behavior of the ion pump under multiple turnover conditions, ATP concentration jump experiments were carried out in the presence of Na(+) and K(+) ions. Current transients induced by ATP concentration jumps were also recorded in the presence of the enzyme alpha-chymotrypsin. The effect of acylphosphatase (AcP), a cytosolic enzyme that may affect the functioning of Na(+),K(+)-ATPase by hydrolyzing its acylphosphorylated intermediate, was investigated by performing ATP concentration jumps both in the presence and in the absence of AcP. In the presence of Na(+) but not of K(+), the addition of AcP causes the charge translocated as a consequence of ATP concentration jumps to decrease by about 50% over the pH range from 6 to 7, and to increase by about 20% at pH 8. Conversely, no appreciable effect of pH upon the translocated charge is observed in the absence of AcP. The above behavior suggests that protons are involved in the AcP-catalyzed dephosphorylation of the acylphosphorylated intermediate of Na(+),K(+)-ATPase.  相似文献   

12.
In renal epithelial cells endocytosis of Na(+),K(+)-ATPase molecules is initiated by phosphorylation of its alpha(1)-subunit, leading to activation of phosphoinositide 3-kinase and adaptor protein-2 (AP-2)/clathrin recruitment. The present study was performed to establish the identity of the AP-2 recognition domain(s) within the Na(+),K(+)-ATPase alpha(1)-subunit. We identified a conserved sequence (Y(537)LEL) within the alpha(1)-subunit that represents an AP-2 binding site. Binding of AP-2 to the Na(+),K(+)-ATPase alpha(1)-subunit in response to dopamine (DA) was increased in OK cells stably expressing the wild type rodent alpha-subunit (OK-WT), but not in cells expressing the Y537A mutant (OK-Y537A). DA treatment was associated with increased alpha(1)-subunit abundance in clathrin vesicles from OK-WT but not from OK-Y537A cells. In addition, this mutation also impaired the ability of DA to inhibit Na(+),K(+)-ATPase activity. Because phorbol esters increase Na(+),K(+)-ATPase activity in OK cells, and this effect was not affected by the Y537A mutation, the present results suggest that the identified motif is specifically required for DA-induced AP-2 binding and Na(+),K(+)-ATPase endocytosis.  相似文献   

13.
The enzyme Na(+), K(+)-ATPase was investigated in the gills of selected hyper-regulating gammarid amphipods. Gill Na(+), K(+)-ATPase was characterised with respect to the main cation and co-factor concentrations for the freshwater amphipod Gammarus pulex. The optimum cation and co-factor concentrations for maximal gill Na(+), K(+)-ATPase activity in G. pulex were 100mM Na(+), 15mM K(+), 15mM Mg(2+) and 5mM ATP, at pH 7.2. The effects of salinity acclimation on gill Na(+), K(+)-ATPase activity and haemolymph sodium concentrations was investigated in selected gammarid amphipods from different salinity environments. Maximal enzyme activity occurred in all gammarids when acclimated to the most dilute media. This maximal activity coincided with the largest sodium gradient between the haemolymph and the external media. As the haemolymph/medium sodium gradient decreased, a concomitant reduction in gill Na(+), K(+)-ATPase activity occurred. This implicates the involvement of gill Na(+), K(+)-ATPase in the active uptake of sodium from dilute media in hyper-regulating gammarids.  相似文献   

14.
The kinetic properties of a microsomal gill (Na(+), K(+)) ATPase from the blue crab, Callinectes danae, acclimated to 15 per thousand salinity for 10 days, were analyzed using the substrate p-nitrophenylphosphate. The (Na(+), K(+))-ATPase hydrolyzed the substrate obeying Michaelian kinetics at a rate of V=102.9+/-4.3 U.mg(-1) with K(0.5)=1.7+/-0.1 mmol.L(-1), while stimulation by magnesium (V=93.7+/-2.3 U.mg(-1); K(0.5)=1.40+/-0.03 mmol.L(-1)) and potassium ions (V=94.9+/-3.5 U.mg(-1); K(0.5)=2.9+/-0.1 mmol.L(-1)) was cooperative. K(+)-phosphatase activity was also stimulated by ammonium ions to a rate of V=106.2+/-2.2 U. mg(-1) with K(0.5)=9.8+/-0.2 mmol.L(-1), following cooperative kinetics (n(H)=2.9). However, K(+)-phosphatase activity was not stimulated further by K(+) plus NH(4) (+) ions. Sodium ions (K(I)=22.7+/-1.7 mmol.L(-1)), and orthovanadate (K(I)=28.1+/-1.4 nmol.L(-1)) completely inhibited PNPPase activity while ouabain inhibition reached almost 75% (K(I)=142.0+/-7.1 micromol.L(-1)). Western blotting analysis revealed increased expression of the (Na(+), K(+))-ATPase alpha-subunit in crabs acclimated to 15 per thousand salinity compared to those acclimated to 33 per thousand salinity. The increase in (Na(+), K(+))-ATPase activity in C. danae gill tissue in response to low-salinity acclimation apparently derives from the increased expression of the (Na(+), K( (+) ))-ATPase alpha-subunit; phosphate-hydrolyzing enzymes other than (Na(+), K(+))-ATPase are also expressed. These findings allow a better understanding of the kinetic behavior of the enzymes that underlie the osmoregulatory mechanisms of euryhaline crustaceans.  相似文献   

15.
We examined the ontogeny of the osmoregulatory sites of the branchial cavity in embryonic and early postembryonic stages of the European lobster Homarus gammarus through transmission electron microscopy, immunofluorescence microscopy, and immunogold electron microscopy using a monoclonal antibody IgGalpha(5) raised against the avian alpha-subunit of the Na(+),K(+)-ATPase. In mid-late embryos, Na(+),K(+)-ATPase was located along the pleurites and within the epipodite buds. In late embryos just before hatching, the enzyme was confined to the epipodite epithelia. After hatching, slight differentiations of ionocytes occured in the epipodites of larval stages. Na(+),K(+)-ATPase was also located in the ionocytes of the epipodites of larvae exposed to seawater (35.%o) and to dilute seawater (22.1 %o). After metamorphosis, the inner-side branchiostegite epithelium appeared as an additional site of enzyme location in postlarvae held in dilute seawater. Within the ionocytes, Na(+),K(+)-ATPase was mostly located along the basolateral infoldings. These observations are discussed in relation to the physiological shift from osmoconforming larvae to slightly hyper-regulating (in dilute seawater) postmetamorphic stages. The acquisition of the ability to hyper-osmoregulate probably originates from the differentiation, on the epipodites and mainly along the branchiostegites, of ionocytes that are the site of ion pumping as evidenced by the location of Na(+),K(+)-ATPase.  相似文献   

16.
Changes in protein and mRNA expression of Na(+),K(+)-ATPase in gills and pyloric caeca of brown trout were investigated on a detailed time course after transfer from freshwater to 25 ppt seawater (SW). A transient deflection in plasma osmolality and muscle water content lasting from 4 h until day 3 was followed by restoration of hydromineral balance from day 5 onward. Gills and pyloric caeca responded to SW transfer by increasing Na(+),K(+)-ATPase activity from days 5 and 3, respectively, onward. In both tissues, this response was preceded by an increase in alpha-subunit Na(+), K(+)-ATPase mRNA as early as 12 h posttransfer. The similarity of the response in these two organs suggests that they both play significant physiological roles in restoring hydromineral balance after abrupt increase in salinity. Further, SW transfer induced a slight, though significant, increase in primary gill filament Na(+), K(+)-ATPase immunoreactive (NKIR) cell abundance. This was paralleled by a marked (50%) decrease in secondary lamellar NKIR cell abundance after less than 1 d in SW. Thus, SW acclimation in brown trout is characterised by a lasting decrease in overall NKIR cell abundance in the gill. We propose that SW transfer stimulates Na(+),K(+)-ATPase enzymatic activity within individual chloride cells long before (<1 d) it becomes apparent in measurements of whole-gill homogenate enzymatic activity. This is supported by the early stabilisation (12 h) of hydromineral balance.  相似文献   

17.
Al-Khalili L  Yu M  Chibalin AV 《FEBS letters》2003,536(1-3):198-202
We determined insulin-stimulated Na(+),K(+)-ATPase isoform-specific translocation to the skeletal muscle plasma membrane. When rat muscle plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of alpha(2)- but not alpha(1)-subunits was detected. However, using cell surface biotinylation techniques, an insulin-induced membrane translocation of both alpha(1) and alpha(2)-subunits in rat epitrochlearis muscle and cultured human skeletal muscle cells was noted. Na(+),K(+)-ATPase alpha-subunit translocation was abolished by the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin, as well as by the protein kinase C inhibitor GF109203X. Thus, insulin mediates Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunit translocation to the skeletal muscle plasma membrane via a PI 3-kinase-dependent mechanism.  相似文献   

18.
The protein kinase C (PKC)-mediated phosphorylation of the Na(+)/K(+)-ATPase alpha-subunit has been shown to play an important role in regulation of the Na(+)/K(+)-ATPase activity. In the rat alpha1-subunit, phosphorylation occurs at Ser-23 and results in inhibition of the transport function of the Na(+)/K(+)-ATPase, which is mimicked by replacing the Ser-23 by the negatively charged glutamic acid or by aspartic acid. Using comparative molecular modeling, we investigated whether phosphorylation or acidic replacement at position 23 causes a dramatic change in the molecular electrostatic potential at position 23 as a result of insertion of a negative charge of the phosphoryl group or Glu per se, or whether, alternatively, the modification causes larger-scale conformational changes in the N-terminus of the alpha-subunit. The results predict a considerable conformational change of the 30-residue stretch around Ser-23 when mutated to the residues carrying a net negative charge or being phosphorylated. The structural rearrangements occur within the N-terminal helix-loop-helix motif with a set of charged residues. This motif has structural homology with one in the Ca(2+)-ATPase and may form a function-related structural site in the P-type ATPases. Comparative molecular modeling indicates a lengthening of the interhelical loop and an order-to-disorder transition by disrupting a helix at position 23 because of posphorylation.  相似文献   

19.
The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the non-catalytic beta-subunit. Correct assembly between the alpha- and beta-subunits is essential for the functional expression of H(+),K(+)-ATPase. The beta-subunit contains nine conserved cysteine residues; two are in the cytoplasmic domain, one in the transmembrane domain, and six in the ectodomain. The six cysteine residues in the ectodomain form three disulfide bonds. In this study, we replaced each of the cysteine residues of the beta-subunit with serine individually and in several combinations. The mutant beta-subunits were co-expressed with the alpha-subunit in human embryonic kidney 293 cells, and the role of each cysteine residue or disulfide bond in the alpha/beta assembly, stability, and cell surface delivery of the alpha- and beta-subunits and H(+),K(+)-ATPase activity was studied. Mutant beta-subunits with a replacement of the cytoplasmic and transmembrane cysteines preserved H(+),K(+)-ATPase activity. All the mutant beta-subunits with replacement(s) of the extracellular cysteines did not assemble with the alpha-subunit, resulting in loss of H(+),K(+)-ATPase activity. These mutants did not permit delivery of the alpha-subunit to the cell surface. Therefore, each of these disulfide bonds of the beta-subunit is essential for assembly with the alpha-subunit and expression of H(+),K(+)-ATPase activity as well as for cell surface delivery of the alpha-subunit.  相似文献   

20.
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the presence of Sch 28080 to block ouabain-sensitive H(+),K(+)-ATPase and improve specificity of the assay. Dibutyryl-cyclic AMP (db-cAMP) administered at a dose of 10(-7) mol/kg per min and 10(-6) mol/kg per min increased Na(+),K(+)-ATPase activity in the renal cortex by 34% and 42%, respectively, and decreased it in the renal medulla by 30% and 44%, respectively. db-cAMP infused at 10(-6) mol/kg per min increased the activity of cortical ouabain-sensitive H(+),K(+)-ATPase by 33%, and medullary ouabain-sensitive H(+),K(+)-ATPase by 30%. All the effects of db-cAMP were abolished by a specific inhibitor of protein kinase A, KT 5720. The stimulatory effect on ouabain-sensitive H(+),K(+)-ATPase and on cortical Na(+),K(+)-ATPase was also abolished by brefeldin A which inhibits the insertion of proteins into the plasma membranes, whereas the inhibitory effect on medullary Na(+),K(+)-ATPase was partially attenuated by 17-octadecynoic acid, an inhibitor of cytochrome p450-dependent arachidonate metabolism. We conclude that the cAMP-PKA pathway stimulates Na(+),K(+)-ATPase in the renal cortex as well as ouabain-sensitive H(+),K(+)-ATPase in the cortex and medulla by a mechanism requiring insertion of proteins into the plasma membrane. In contrast, medullary Na(+),K(+)-ATPase is inhibited by cAMP through a mechanism involving cytochrome p450-dependent arachidonate metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号