首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
? All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. ? Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. ? Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. ? We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.  相似文献   

2.
The detection of ultraweak light emission in seedlings has been explored in toxicological and chronobiological studies. The main studies in this area are reviewed briefly, including a report on applied tests held in the last 7 years at LaFA – UNICAMP (Brazil). In general, results indicate that a linear relation for total light emission versus germination performance is found if only strong stress situations are considered, when external factors depress a seedling's development, even when considering a sequential series of tests. Light emitted by a single seedling was detected in a compact apparatus, and data are presented here for the first time showing pronounced circadian cycles are evident, with similar time and frequency profiles as those of the local gravimetric tide. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
《Médecine Nucléaire》2014,38(5):275-282
Diagnostic management of a patient with suspected acute pulmonary embolism is not based on a single and definitive test but on the application of integrated diagnostic strategies including clinical probability assessment, D-dimer, and imaging tests. Currently validated diagnostic algorithm use as cornerstone either computed tomography pulmonary angiography, or planar pulmonary ventilation–perfusion, each with advantages and drawbacks. Pulmonary single photon emission computed tomography provides interesting perspectives to position itself as an ideal alternative to these two diagnostic tests. However, the validation of a diagnostic strategy including pulmonary single photon emission computed tomography is still required.  相似文献   

4.
Photon emission (PE) and light-induced photon emission(LPE) of intact brains isolated from chick embryos have been measured by using the single photon counting device. Experimental results showed that the intensi-ty level of photon emission was detected to be higher from intact brain than from the medium in which the brain was immerged during measuring, and the emission intensity was related to the developmental stages, the healthy situation of the measured embryos, and the freshness of isolated brains as well. After white light illumination, a short-life de-layed emission from intact brains was observed, and its relaxation behavior followed a hyperbolic rather than an expo-nential law. According to the hypothesis of biophoton emission originating from a delocalized coherent electromagnetic field and Frohlich's idea of coherent long-range interactions in biological systems, discussions were made on the signifi-cance of photon emission in studying cell communication, biological regulation, living system'  相似文献   

5.
Barlow PW  Fisahn J 《Annals of botany》2012,110(2):301-318

Background

Correlative evidence has often suggested that the lunisolar tidal force, to which the Sun contributes 30 % and the Moon 60 % of the combined gravitational acceleration, regulates a number of features of plant growth upon Earth. The time scales of the effects studied have ranged from the lunar day, with a period of approx. 24·8 h, to longer, monthly or seasonal variations.

Scope

We review evidence for a lunar involvement with plant growth. In particular, we describe experimental observations which indicate a putative lunar-based relationship with the rate of elongation of roots of Arabidopsis thaliana maintained in constant light. The evidence suggests that there may be continuous modulation of root elongation growth by the lunisolar tidal force. In order to provide further supportive evidence for a more general hypothesis of a lunisolar regulation of growth, we highlight similarly suggestive evidence from the time courses of (a) bean leaf movements obtained from kymographic observations; (b) dilatation cycles of tree stems obtained from dendrograms; and (c) the diurnal changes of wood–water relationships in a living tree obtained by reflectometry.

Conclusions

At present, the evidence for a lunar or a lunisolar influence on root growth or, indeed, on any other plant system, is correlative, and therefore circumstantial. Although it is not possible to alter the lunisolar gravitational force experienced by living organisms on Earth, it is possible to predict how this putative lunisolar influence will vary at times in the near future. This may offer ways of testing predictions about possible Moon–plant relationships. As for a hypothesis about how the three-body system of Earth–Sun–Moon could interact with biological systems to produce a specific growth response, this remains a challenge for the future. Plant growth responses are mainly brought about by differential movement of water across protoplasmic membranes in conjunction with water movement in the super-symplasm. It may be in this realm of water movements, or even in the physical forms which water adopts within cells, that the lunisolar tidal force has an impact upon living growth systems.  相似文献   

6.
Living organisms have been known to spontaneously emit ultraweak photons in vivo and in vitro. Origin of the photon emission remains unclear, especially in the nervous system. The spontaneous ultraweak photon emission was detected here from cultured rat cerebellar granule neurons using a photomultiplier tube which was highly sensitive to visible light. The photon emission was facilitated by the membrane depolarization of neurons by a high concentration of K+ and was attenuated by application of tetrodotoxin or removal of extracellular Ca2+, indicating the photon emission depending on the neuronal activity and likely on the cellular metabolism. Furthermore, almost all the photon emission was arrested by 2,4-dinitrophenylhydrazine, indicating that the photon emission would be derived from oxidized molecules. Detection of the spontaneous ultraweak photon emission will realize noninvasive and real-time monitoring of the redox state of neural tissue corresponding to the neuronal activity and metabolism.  相似文献   

7.
The hypersensitive response (HR) is one mechanism of the resistance of plants to pathogen infection. It involves the generation of reactive oxygen species (ROS) which have crucial roles in signal transduction or as toxic agents leading to cell death. Often, ROS generation is accompanied by an ultraweak photon emission resulting from radical reactions that are initiated by ROS through the oxidation of living materials such as lipids, proteins, and DNA. This photon emission, referred to as 'biophotons', is extremely weak, but, based on the technique of photon counting imaging, a system has been developed to analyse the spatiotemporal properties of photon emission. Using this system, the dynamics of photon emission which might be associated with the oxidative burst, which promotes the HR, have been determined. Here, the transient generation of biophotons is demonstrated during the HR process in cowpea elicited by cucumber mosaic virus. The distinctive dynamics in spatiotemporal properties of biophoton emission during the HR expression on macroscopic and microscopic levels are also described. This study reveals the involvement of ROS generation in biophoton emission in the process of HR through the determination of the inhibitory effect of an antioxidant (Tiron) on biophoton emission.  相似文献   

8.
化学物质对哺乳动物细胞超微弱发光的影响   总被引:1,自引:0,他引:1  
各种不同的化学物质可以以不同的方式影响光子发射.实验所用的化学制剂为过氧化氢、硫酸亚铁铵、氢氧化钠、盐酸及乙醇.从光子发射的暂时过程,可以看到两种类型反应.添加过氧化氢或氢氧化钠可导致初始的光子发射增强,以后随时间推移而迅速降低.加入Fe~(2 ) K_2Cr_2O_7或乙醇以后则有完全不同的发光动力学过程.V_(79)细胞的超微弱光子发射被认为是整个细胞的一种性质, 实验结果表明, 各种化学物质可以引起光子发射的明显增加或降低,但光谱分布却来看出变化,上述化学制剂的作用仅仅是刺激或抑制光子发射.  相似文献   

9.
H. Reiber 《Luminescence》1989,4(1):245-248
Cellular low-level luminescence was measured after various disintegrative processes in brain cell preparations. In addition to known origins of low-level luminescence, e.g. oxygen radical reactions or enzymatic and non-enzymatic redox systems, a further source of photon emission is reported which is independent of external oxygen, oxygen radicals and enzyme activities. Vital cells from rat brain homogenates or pig oligodendrocytes could be kept for hours at 37 °C without any photon emission. Only after disintegrative processes a cellular photon emission could be induced. The maximal intensity of about 400 impulses/s/mg protein and a total radiation of about 6 × 106 I/mg depended on the type of cells. The signal could be retained completely at 4 °C or in frozen samples. Heating (10 min, 90 °C) did not suppress the photon emission. Luminol and lucigenin did not amplify the signal as is usually observed in oxygen radical-producing cells. Non-specific radical scavengers as well as detergents suppressed the cellular photon emission completely. It is suggested that this cellular luminescence represents a biophysical radiation which originates from the interruption of an intermolecular radiationless energy transfer.  相似文献   

10.
A scanning system for the detection of spontaneous ultraweak photon emission from nude mice with transplanted tumors is presented. A photomultiplier tube (PMT) with an effective area of 15 mm diameter was used for measuring photon emission in a wavelength range from 300 to 650 nm. Tumors were induced in nude mice by transplantation of an ovarian cancer cell line into the back of mice. The PMT was moved for scanning over the whole body of a mouse placed in a dark box. The profiles of the intensities of photon emissions from the tumor mice are presented and compared with those obtained from the control mice.  相似文献   

11.
This paper describes the instrumentation and operation of a photon counting system which was constructed to measure the delayed light emission from the algae Scenedesmus. The functioning of the system was illustrated by a plot which compared data of the recorded delayed light emission with data of the system noise over the first 20-μsec interval after extinction of a modulated laser beam. We believe that this paper shows the utility of photon counting as a satisfactory method of measuring biological light emission, especially a very rapid process such as the delayed light emission from photosynthetic organisms.  相似文献   

12.
Plants, like almost all living organisms, spontaneously emit photons of visible light. We used a highly sensitive, low-noise cooled charge coupled device camera to image spontaneous photon emission (autoluminescence) of plants. Oxidative stress and wounding induced a long-lasting enhancement of plant autoluminescence, the origin of which is investigated here. This long-lived phenomenon can be distinguished from the short-lived chlorophyll luminescence resulting from charge recombinations within the photosystems by pre-adapting the plant to darkness for about 2 h. Lipids in solvent were found to emit a persistent luminescence after oxidation in vitro, which exhibited the same time and temperature dependence as plant autoluminescence. Other biological molecules, such as DNA or proteins, either did not produce measurable light upon oxidation or they did produce a chemiluminescence that decayed rapidly, which excludes their significant contribution to the in vivo light emission signal. Selective manipulation of the lipid oxidation levels in Arabidopsis mutants affected in lipid hydroperoxide metabolism revealed a causal link between leaf autoluminescence and lipid oxidation. Addition of chlorophyll to oxidized lipids enhanced light emission. Both oxidized lipids and plants predominantly emit light at wavelengths higher than 600 nm; the emission spectrum of plant autoluminescence was shifted towards even higher wavelengths, a phenomenon ascribable to chlorophyll molecules acting as luminescence enhancers in vivo. Taken together, the presented results show that spontaneous photon emission imaged in plants mainly emanates from oxidized lipids. Imaging of this signal thus provides a simple and sensitive non-invasive method to selectively visualize and map patterns of lipid oxidation in plants.  相似文献   

13.
The color of visual pigments is experimentally shown to be controlled by excited state effects. These effects which define the primary absorption of light by rhodopsin are considered together with results obtained from emission and picosecond spectroscopy. In addition, the molecular changes induced in rhodopsin when a photon is absorbed are analyzed using resonance Raman spectroscopy. The molecular changes observed are compared in bacterial and photoreceptor rhodopsins. This comparison yields a unique explanation for the biological role of the cis-trans isomerization in visual transduction.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

14.
Our initial objective has been to examine the suggestion of Zürcher et al. (Nature 392:665–666, 1998) that the naturally occurring variations in stem diameter of two experimental trees of Picea alba were related to near-simultaneous variations in the lunisolar tidal acceleration. The relationship was positive: Lunar peaks were roughly synchronous with stem diameter peaks. To extend the investigation of this putative relationship, additional data on stem diameter variations from six other tree species were gathered from published literature. Sixteen sets of data were analysed retrospectively using graphical representations as well as cosinor analysis, statistical cross-correlation and cross-spectral analysis, together with estimated values of the lunisolar tidal acceleration corresponding to the sites, dates and times of collection of the biological data. Positive relationships were revealed between the daily variations of stem diameter and the variations of the lunisolar tidal acceleration. Although this relationship could be mediated by a 24.8-h lunar rhythm, the presence of a solar rhythm of 24.0 h could not be ruled out. Studies of transpiration in two of the observed trees indicated that although this variable was not linked to stem diameter variation, it might also be subject to lunisolar gravitational regulation. In three cases, the geomagnetic Thule index showed a weak but reciprocal relationship with stem diameter variation, as well as a positive relationship with the lunisolar tidal force. In conclusion, it seems that lunar gravity alone could influence stem diameter variation and that, under certain circumstances, additional regulation may come from the geomagnetic flux.  相似文献   

15.
Einig  Werner  Mertz  Andrea  Hampp  Rüdiger 《Plant Ecology》1999,143(1):23-28
Seedlings of Brazil pine, a large-seeded South American conifer, were grown in a climate chamber to investigate vertical growth pattern and the time course of leaf development. We examined shoot growth, photosynthetic performance and markers of leaf maturation such as contents of soluble sugars and activities of sucrose-phosphate synthase (SPS), neutral invertase (nI) and sucrose synthase (Susy). The daily increment of shoot length showed an optimum curve during the first 70 days after germination. The low growth rate during the first 20 days of development correlated with net CO2 emission of the seedling. Analyses of leaf maturation markers in older seedlings revealed low sucrose/hexose ratios and high activities of nI and Susy in the uppermost leaves. Although the SPS/Susy ratio was low in these leaves the extractable SPS activity did not change significantly among leaves of different age. The photosynthetic light compensation points of young leaves were about 2-fold higher than those of mature leaves and their photosynthetic capacity was only 50% as high. Our results indicate that a rapid maturation of leaves of Brazil pine seedlings may reduce the respiratory loss of carbohydrates and that the mobilisation of seed storage compounds supports initial shoot growth under light-limiting conditions which may occur in the forest-grassland succession zone.  相似文献   

16.
Lipoxygenase (LOX) and peroxidase (POD) reactions, which are involved in the production of reactive oxygen and radical species, are shown to be associated with ultraweak photon emission in plant defense mechanisms. These enzyme reactions induced high-level ultraweak photon emission in an in vitro reaction system. The application of LOX to sweet potato slices caused photon emission directly in plants. LOX substrate promoted photon emission in chitosan-treated sweet potato, and LOX inhibitor markedly suppressed this emission. Therefore, a LOX-related pathway, including LOX and other downstream reactions, is principally associated with photon emission in plant defense mechanisms.  相似文献   

17.
Peanut (Arachis hypogea L.) seedlings readily transported Nato the shoot. The amount of Na transported was linearly relatedto the absorption period (which ranged from 1 to 8 h) and alsoto the external Na level which varied from 0.05 to 1 mM.  相似文献   

18.
Chen YP  Jia JF  Han XL 《Planta》2009,229(2):291-298
The aim of the investigation is to determine the effect of microwave pretreatment of wheat seeds on the resistance of seedlings to osmotic stress. Changes in biophysical, physiological and biochemical characters were measured. The results showed: (1) The magnetic field intensity and seeds temperature increased progressively with microwave pretreatments of 5, 10, 15, 20 s and 25 s compared with controls. Although each microwave pretreatment resulted in an increase in alpha-amylase activity and photon emission intensity, the increase of alpha-amylase activity and photon emission intensity was maximal at a microwave pretreatment of 10 s. (2) Osmotic stress induced by PEG treatment enhanced the concentration of malondialdehyde, while decreasing the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid, glutathione in the seedlings compared with controls. However, compared to osmotic stress alone, in the seedlings treated with microwave irradiation plus osmotic stress the concentration of malondialdehyde decreased, while the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid and glutathione increased. These results suggest that a suitable dose of microwave radiation can enhance the capability to eliminate free radicals induced by osmotic stress in wheat seedlings resulting in an increase in resistance to osmotic stress.  相似文献   

19.
Cells and organisms exposed to detrimental and toxic substances show different responses in photon emission dependent on amount, kind and exposure time of toxin as well as on the organism investigated. Radical reaction-generating substances and dehydrating, lipid dissolving and protein denaturating toxins which do not induce direct chemiluminescence resulting from reactive oxygen species were applied. Lethal doses of toxins and stress factors such as osmotics and temperature evoke increase in the intensity of photon emission resulting from a rapid and irreversible perturbation of homeostasis. Bacterial and fungal toxins that elicit hypersensitive death of plant cells or defense response correlated with photon emission are also briefly discussed. Collective molecular interactions contribute to the photon-generating degradative processes in stressed and dying organisms. The measurements of biophoton signals and analysis of their parameters are used to elucidate the possible mechanisms of the toxin-organism interaction and the resistance of organisms. Toxicological perspectives of the use of these sensitive and rapid measurements as a part of direct toxicity assessment are discussed.  相似文献   

20.
Ultraweak photons which are spontaneously emitted from a living body may be applicable as a non-invasive tool to characterize the physiological state of the living body. We investigated changes in the intensity of ultraweak photon emission, body temperature and the cardiovascular autonomic activity induced by epinephrine injection to rats. A high dose of epinephrine can make changes to the cardiovascular autonomic activity or body temperature. Photon emission of the dorsal part, rectal temperature and heart rate variability (HRV) were measured from eight Sprague-Dawley rats. The intensities of photon emissions for saline injections, which were used as a control, decreased from 13042+/-71 counts/min at the start of measurements to 8709+/-915 counts/min at 1 h after the injections. In the case with epinephrine injections, the intensity of photon emission reduced slowly from 13361+/-354 counts/min to 11040+/-433 counts/min. Rectal temperature increased in both saline- and epinephrine-injected rats, but one hour after the injections the temperature in the epinephrine case was slightly higher than that in the saline case. The standard deviation of the QRS wave complex interval (RR interval) increased from 1 to 4 (p<0.05) and the spectral ratio of the low frequency component to the high frequency component in the HRV data LF (0.19 approximately 0.74 Hz) / HF (0.78 approximately 2.50 Hz) decreased from 0.81 to 0.26 (p<0.05) in the case of epinephrine injection while no change was found in the case of saline injection. Thus, ultraweak photon emission was closely related to the cardiovascular autonomic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号