首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Solanum pennellii LA716, a wild relative of tomato, produces acylsugars, an insect resistance compound with activity against many tomato insect pests. Breeding of cultivated tomato using S. pennellii LA716 as a donor parent has led to the development of the elite acylsugar-producing tomato breeding line CU071026. CU071026 contains five introgressed S. pennellii genomic regions, and produces acylsugars at moderate levels that are effective against insect pests. A BC1F1 population was created by crossing the F1 CU071026?×?S. pennellii LA716 with CU071026 as the recurrent parent; this BC1F1 population was used to identify additional regions of the S. pennellii genome important for further improvement of acylsugar production. This population was genotyped with 94 markers in the segregating regions and phenotyped for level of acylsugar production. Using QTLNetwork 2.1 for the detection of quantitative trait loci (QTL) and epistatic interactions, this study identified five QTL for total acylsugar level. Additionally, two epistatic interactions between QTL were found to control significant levels of total acylsugar production. Two of the QTL identified were further evaluated in silverleaf whitefly (Bemisia tabaci) field cage trials using acylsugar breeding lines that differ for the presence/absence of these QTL. While high levels of silverleaf whitefly resistance were observed in all acylsugar breeding lines, lines containing the additional QTL on either chromosomes 6 or 10 had increased levels of total acylsugar production and reduced incidence of whitefly. Acylsugar lines containing the chromosome 6 QTL also had increased density of the type IV glandular trichomes which produce and exude acylsugars.  相似文献   

2.
Tomato production in the tropics is threatened by whitefly infestation and tomato leaf curl virus (ToLCV) causing severe economic losses. No stable resistance to these biotic challenges has been identified in eastern India. Therefore, initial screening of 19 advance breeding lines of tomato was carried out during the year 2016–17. Based on the whitefly population per leaf and tomato leaf curl disease severity, eight tomato genotypes were selected for final screening during the year 2017–18. Morphological leaf traits and biochemical parameters in tomato leaf were assessed in selected genotypes and considered as potential mediators of resistance. Significant variation was observed for whitefly infestation and ToLCV disease severity among the tomato genotypes tested. Higher leaf trichome density with narrow and thinner leaves and higher total phenol content in leaf emerged as reliable morphological and biochemical markers for early selection of tomato genotype resistant to whitefly and ToLCV disease. The resistance of tomato genotypes 2016/Res-1, 2015/Res-5, 2014/Res-1 and 2014/Res-4 to both whitefly and ToLCV disease is based on antixenotic properties and they could be utilized in future breeding to enhance stable resistance against these biotic challenges.  相似文献   

3.

Key message

We report a second major QTL for root-knot nematode resistance in the highly resistant Upland cotton line M-120RNR and show epistasis between two resistant QTLs with different mechanisms conferring resistance.

Abstract

In an earlier study, we identified a major QTL on Chromosome 11 associated with resistance to root-knot nematode in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Herein, we re-evaluated the genetics of the resistance to root-knot nematode in the M-120 RNR × Pima S-6 population by linkage mapping using recently published SSR markers. The QTL analysis detected two regions significantly associated with the resistance phenotype. In addition to the QTL previously identified on Chromosome 11 (qMi-C11), a major QTL was identified on Chromosome 14 (qMi-C14). The resistance locus on qMi-C11 originated from the Clevewilt parent, while the qMi-C14 locus originated from the other resistant parent, Mexico Wild Jack Jones. The qMi-C14 locus had logarithms of odds score of 17 and accounted for 45 % of the total phenotype variation in egg production. It was also associated with galling index, but the percent variation explained was only 6 %, suggesting that the qMi-C11 locus had a much stronger effect on root gall suppression than egg production, while the qMi-C14 locus had a stronger effect on egg production than galling. The results also suggest that the transgressive segregation observed in the development of Auburn 623 RNR was due to the pyramiding of at least two main effect QTLs as well as an additive-by-additive epistatic effects between the two resistant loci. The SSRs markers tightly linked to the qMi-C11 and qMi-C14 loci will greatly facilitate the improvement of RKN resistance in cotton via marker-assisted breeding.  相似文献   

4.
The tomato yellow leaf curl virus (TYLCV), transmitted by whitefly, causes major disease losses to tomato crops in tropical and subtropical regions of the world. Several genes conferring resistance to TYLCV, mainly Ty-1 and Ty-3 genes, have been introgressed to cultivated tomato (Solanum lycopersicum) from the wild relative species Solanum chilense. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), several AFLP markers closely linked to Ty-1 and Ty-3 genes were identified from the resistant breeding line TZ841-4. Cloning and sequencing of the selected AFLP fragments allowed us to develop codominant cleaved amplified polymorphic sequence and dominant sequence characterized amplified region markers closely linked to Ty-1. In addition, Ty-3-linked allelic-specific markers have been discriminated by a quantitative real-time PCR protocol. Taken together, these markers constitute useful tools for marker-assisted selection breeding programs to improve genetic resistance to TYLCV, and also to initiate map-based cloning approaches to isolate the resistance genes.  相似文献   

5.
The RXopJ4 resistance locus from the wild accession Solanum pennellii (Sp) LA716 confers resistance to bacterial spot disease of tomato (S. lycopersicum, Sl) caused by Xanthomonas perforans (Xp). RXopJ4 resistance depends on recognition of the pathogen type III effector protein XopJ4. We used a collection of Sp introgression lines (ILs) to narrow the RXopJ4 locus to a 4.2-Mb segment on the long arm of chromosome 6, encompassed by the ILs 6-2 and 6-2-2. We then adapted or developed a collection of 14 molecular markers to map on a segregating F2 population from a cross between the susceptible parent Sl FL8000 and the resistant parent RXopJ4 8000 OC7. In the F2 population, a 190-kb segment between the markers J350 and J352 cosegregated with resistance. This fine mapping will enable both the identification of candidate genes and the detection of resistant plants using cosegregating markers. The RXopJ4 resistance gene(s), in combination with other recently characterized genes and a quantitative trait locus (QTL) for bacterial spot disease resistance, will likely be an effective tool for the development of durable resistance in cultivated tomato.  相似文献   

6.
The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is the most common and abundant whitefly in Argentine horticultural greenhouse crops, especially in tomato (Solanum lycopersicum). Resistance in some wild tomato relatives, such as S. peruvianum, S. habrochaites and S. pennellii to the greenhouse whitefly has been described. The Mi gene confers effective resistance against several species of insects, among them the sweet potato whitefly, Bemisia tabaci Gennadius. Resistance to T. vaporariorum was found in the prebreeding line FCN 93-6-2, derived from a cross between S. lycopersicum cultivar Uco Plata INTA (MiMi) and the wild line FCN 3-5 S. habrochaites. The purpose of this study was to evaluate resistance to T. vaporariorum in tomato genotypes and to study the relationship between this resistance and the presence of the REX-1 marker, which is linked to the Mi gene. In a free-choice assay, the average number of adults per leaf and the number of immatures on the middle and basal plant parts were analyzed. In a no-choice assay, the oviposition rate and adult survival rate were calculated. For all variables analyzed, FCN 3-5 was the most resistant strain. Variations were found in the F2 progeny between the prebreeding line FCN 13-1-6-1 and cv. Uco Plata INTA. Results from the F2 progeny indicate that resistance to T. vaporariorum may be polygenic with transgressive segregation. Whitefly resistance was found to be independent of the REX-1 marker.  相似文献   

7.
Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus was identified in accessions of wild relatives of tomato such as S. habrochaites LYC4. In order to identify loci involved in quantitative resistance (QTLs) to B. cinerea, a population of 174 F2 plants was made originating from a cross between S. lycopersicum cv. Moneymaker and S. habrochaites LYC4. The population was genotyped and tested for susceptibility to grey mold using a stem bioassay. Rbcq1, a QTL reducing lesion growth (LG) and Rbcq2, a QTL reducing disease incidence (DI) were identified. Rbcq1 is located on Chromosome 1 and explained 12% of the total phenotypic variation while Rbcq2 is located on Chromosome 2 and explained 15% of the total phenotypic variation. Both QTL effects were confirmed by assessing disease resistance in two BC2S1 progenies segregating for either of the two QTLs. One additional QTL, Rbcq4 on Chromosome 4 reducing DI, was identified in one of the BC2S1 progenies. F2 individuals, homozygous for the Rbcq2 and Rbcq4 alleles of S. habrochaites showed a reduction of DI by 48%. QTLs from S. habrochaites LYC4 offer good perspectives for breeding B. cinerea resistant tomato cultivars. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
Acylsugars are secondary metabolites with proven insect resistance properties that are produced by many Solanaceous species including Solanum pennellii, a wild relative of tomato. The acylsugar chemotypes of S. pennellii varies greatly within its natural range and might be the product of plant/insect coevolution. The S. pennellii accession LA716 was used to transfer increased levels of acylsugar production into the cultivated tomato, resulting in the acylsugar tomato breeding line CU071026. S. pennellii accession LA716 produces high levels of acylsugars with chemotypes that differ greatly from those produced by CU071026 or the trace acylsugars of cultivated tomato. Understanding the genetic regulation of acylsugar chemistry will aid efforts to breed acylsugar production into cultivated tomato, allowing for alteration of both acylsugar base moieties and fatty acid profiles. This study uses a BC1F1 population produced from the cross of S. pennellii LA716 and CU071026 with CU071026 as the recurrent parent to identify QTL that change the fatty acid profile of acylsugars. Multiple QTL and epistatic interactions between QTL were detected including three QTL on chromosomes 2, 5, and 7, which significantly alter the percentage of extended iso-odd branched fatty acids and straight chain fatty acids on the acylsugars. We also report the introgression of one of these QTL, FA 2, into CU071026, resulting in a new tomato line with significantly increased i11:0 as a percentage of the fatty acids in its acylsugars. Candidate genes for these QTL and the impacts of altering acylsugar fatty acid are discussed.  相似文献   

9.
Acylsugars are broad-spectrum insect resistance sugar esters produced at very high levels by some accessions of the wild tomato, Solanum pennellii. Transferring acylsugar production from S. pennellii LA716 to cultivated tomato through traditional breeding developed the benchmark acylsugar breeding line CU071026. The base moiety of acylsugars (sucrose vs. glucose) can vary among S. pennellii accessions. Additionally the accession S. pennellii LA716 produces almost exclusively acylglucoses, but the breeding line CU071026 derived from S. pennellii LA716 produces exclusively acylsucroses. This study uses a BC1F1 and a BC1F2 population derived from the cross CU071026 × (CU071026 × S. pennellii LA716) to identify and confirm the action of three quantitative trait loci (QTL) on chromosomes 3, 4, and 11. The QTL on chromosomes 3 and 11 are both required for acylglucose production, while addition of the chromosome 4 QTL affects the level of acylglucose produced in the presence of the QTL on chromosomes 3 and 11. A three-way interaction between these acylglucose QTL was confirmed with a post hoc ANOVA. Identification of these three QTL provides a blueprint for breeding to shift acylsucrose production to acylglucose production in tomato breeding lines. The implications of these QTL and two additional QTL affecting total acylsugar level in the BC1F2 are discussed.  相似文献   

10.
The silverleaf whitefly (SLW), Bemisia tabaci biotype B, is considered one of the most serious pests in cotton worldwide. Its control is based on the use of pesticides, which are well‐known for their harmful effects on non‐target organisms and the environment. Here, we examined resistance of several cotton genotypes in terms of antixenosis and antibiosis against SLW. We also investigated the mechanisms of cotton genotypes involved in antixenosis against SLW by correlating with leaf trichome density and leaf colour parameters. In choice tests, we selected resistant cotton genotypes, Gossypium hirsutum palmeri, Aubum 56‐7, G. hirsutum morrilli, Mocó, Nu‐16 (B2 B3 B6)‐ 78/658, Paymaster 53‐816 and ‘IAC 23’, based on SLW oviposition and host preference. No‐choice tests with these genotypes confirmed antixenosis effect on SLW; however, no antibiosis resistance was detected in terms of developmental period and adult emergence rate. We found SLW oviposition preference was positively correlated with trichome density in the abaxial leaf surface, while adult host preference was mostly explained by high levels of green intensity of adaxial surface. Nevertheless, both SLW oviposition and host preference were negatively correlated with the lightness level of adaxial leaf surface. Probably, the underlying mechanism of cotton resistance is based on more than just these two parameters, but our study will contribute to selecting resistant cotton genotypes and helps to understand the mechanisms involved in cotton resistance against SLW. To our best knowledge, this is the first work showing that cotton leaf colour parameters are related to resistance against SLW.  相似文献   

11.
Tomato yellow leaf curl virus (TYLCV) is devastating to tomato (Solanum lycopersicum) crops and resistant cultivars are highly effective in controlling the disease. The breeding line TY172, originating from Solanum peruvianum, is highly resistant to TYLCV. To map quantitative trait loci (QTLs) controlling TYLCV resistance in TY172, appropriate segregating populations were analyzed using 69 polymorphic DNA markers spanning the entire tomato genome. Results show that TYLCV resistance in TY172 is controlled by a previously unknown major QTL, originating from the resistant line, and four additional minor QTLs. The major QTL, we term Ty-5, maps to chromosome 4 and accounts for 39.7–46.6% of the variation in symptom severity among segregating plants (LOD score 33–35). The minor QTLs, originated either from the resistant or susceptible parents, were mapped to chromosomes 1, 7, 9 and 11, and contributed 12% to the variation in symptom severity in addition to Ty-5.  相似文献   

12.

Key message

We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL.

Abstract

The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.  相似文献   

13.
A novel source of resistance to two-spotted spider mite (Tetranychus urticae Koch) was found in Solanum pimpinellifolium L. accession TO-937 and thereby a potential source of desirable traits that could be introduced into new tomato varieties. This resistance was found to be controlled by a major locus modulated by minor loci of unknown location in the genome of this wild tomato. We first applied a bulked segregant analysis (BSA) approach in an F4 population as a method for rapidly identifying a genomic region of 17 cM on chromosome 2, flanked by two simple sequence repeat markers, harboring Rtu2.1, one of the major QTL involved in the spider mite resistance. A population of 169 recombinant inbred lines was also evaluated for spider mite infestation and a highly saturated genetic map was developed from this population. QTL mapping corroborated that chromosome 2 harbored the Rtu2.1 QTL in the same region that our previous BSA findings pointed out, but an even more robust QTL was found in the telomeric region of this chromosome. This QTL, we termed Rtu2.2, had a LOD score of 15.43 and accounted for more than 30 % of the variance of two-spotted spider mite resistance. Several candidate genes involved in trichome formation, synthesis of trichomes exudates and plant defense signaling have been sequenced. However, either the lack of polymorphisms between the parental lines or their map position, away from the QTL, led to their rejection as candidate genes responsible for the two-spotted spider mite resistance. The Rtu2 QTL not only serve as a valuable target for marker-assisted selection of new spider mite-resistant tomato varieties, but also as a starting point for a better understanding of the molecular genetic functions underlying the resistance to this pest.  相似文献   

14.
Selection for increased resistance to Salmonella colonisation and excretion could reduce the risk of foodborne Salmonella infection. In order to identify potential loci affecting resistance, differences in resistance were identified between the N and 61 inbred lines and two QTL research performed. In an F2 cross, the animals were inoculated at one week of age with Salmonella enteritidis and cloacal swabs were carried out 4 and 5 wk post inoculation (thereafter called CSW4F2 and CSW4F2) and caecal contamination (CAECF2) was assessed 1 week later. The animals from the (N × 61) × N backcross were inoculated at six weeks of age with Salmonella typhimurium and cloacal swabs were studied from wk 1 to 4 (thereafter called CSW1BC to CSW4BC). A total of 33 F2 and 46 backcross progeny were selectively genotyped for 103 and 135 microsatellite markers respectively. The analysis used least-squares-based and non-parametric interval mapping. Two genome-wise significant QTL were observed on Chromosome 1 for CSW2BC and on Chromosome 2 for CSW4F2, and four suggestive QTL for CSW5F2 on Chromosome 2, for CSW5F2 and CSW2BC on chromosome 5 and for CAECF2 on chromosome 16. These results suggest new regions of interest and the putative role of SAL1.  相似文献   

15.
Seedlings of 62 Australian barley cultivars and two exotic barley genotypes were assessed for resistance to a variant of Puccinia striiformis, referred to as “Barley Grass Stripe Rust” (BGYR), first detected in Australia in 1998, which is capable of infecting wild Hordeum species and some genotypes of cultivated barley. Fifty-three out of 62 cultivated barley cultivars tested were resistant to the pathogen. Genetic analyses of seedling resistance to BGYR in six Australian barley cultivars and one Algerian barley landrace indicated that they carried either one or two major resistance genes to the pathogen. A single recessive seedling resistance gene, rpsSa3771, identified in Sahara 3771, was located on the long arm of chromosome 1 (7 H), flanked by the restriction fragment length polymorphism (RFLP) markers Xwg420 and Xcdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using the doubled haploid (DH) population Clipper × Sahara 3771 identified two major quantitative trait loci (QTL), one on the long arm of chromosome 3 (3 H) and the second on the long arm of chromosome 1 (7 H), accounting for 26 % and 18 % of the total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to seedling resistance gene rpsSa3771 and the second QTL was concluded to correspond to a single APR gene, designated rpsCl, contributed by cultivar Clipper.  相似文献   

16.
Summary The Alternaria stem canker resistance locus (Asc-locus), involved in resistance to the fungal pathogen Alternaria alternata f. sp. lycopersici and in insensitivity to host-specific toxins (AAL-toxins) produced by the pathogen, was genetically mapped on the tomato genome. Susceptibility and resistance were assayed by testing a segregating F2 population for sensitivity to AAL-toxins in leaf bioassays. Linkage was observed to phenotypic markers solanifolium and sunny, both on chromosome 3. For the Asc-locus, a distance of 18 centiMorgan to solanifolium was calculated, corresponding to position 93 on chromosome 3. This map position of the resistance locus turned out to be the same in three different resistant tomato accessions, one Dutch and two American, that are at least 40 years apart. AAL-toxin sensitivity in susceptible and resistant tomato genotypes was compared with AAL-toxin sensitivity in a non-host Nicotiana tabacum during different levels of plant cell development. In susceptible and resistant tomato genotypes, inhibitory effects were demonstrated at all levels, except for leaves of resistant genotypes. However, during pollen and root development, inhibitory effects on susceptible genotypes were larger than on resistant genotypes. In the non-host Nicotiana tabacum, hardly any effects of AAL-toxins were demonstrated. Apparently, a cellular target site is present in tomato, but not in Nicotiana tabacum. It was concluded that three levels of AAL-toxin sensitivity exist: (1) a susceptible host sensitivity, (2) a resistant host sensitivity, (3) a non-host sensitivity, and that the resistance mechanism operating in tomato is different from that operating in Nicotiana tabacum.  相似文献   

17.
Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100–Satt460 and Sat_038–Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.  相似文献   

18.
Head smut, caused by the fungus Sphacelotheca reiliana (Kühn) Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL) population from a cross between a resistant line “QI319” and a susceptible line “Huangzaosi” (HZS) with a genetic map constructed from genotyping-by-sequencing (GBS) data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR) and Chromosome 5 (q5.03HR), q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS) using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.  相似文献   

19.

Background

Columnaris causes severe mortalities among many different wild and cultured freshwater fish species, but understanding of host resistance is lacking. Catfish, the primary aquaculture species in the United States, serves as a great model for the analysis of host resistance against columnaris disease. Channel catfish in general is highly resistant to the disease while blue catfish is highly susceptible. F2 generation of hybrids can be produced where phenotypes and genotypes are segregating, providing a useful system for QTL analysis. To identify genes associated with columnaris resistance, we performed a genome-wide association study (GWAS) using the catfish 250 K SNP array with 340 backcross progenies derived from crossing female channel catfish (Ictalurus punctatus) with male F1 hybrid catfish (female channel catfish I. punctatus × male blue catfish I. furcatus).

Results

A genomic region on linkage group 7 was found to be significantly associated with columnaris resistance. Within this region, five have known functions in immunity, including pik3r3b, cyld-like, adcyap1r1, adcyap1r1-like, and mast2. In addition, 3 additional suggestively associated QTL regions were identified on linkage groups 7, 12, and 14. The resistant genotypes on the QTLs of linkage groups 7 and 12 were found to be homozygous with both alleles being derived from channel catfish. The paralogs of the candidate genes in the suggestively associated QTL of linkage group 12 were found on the QTLs of linkage group 7. Many candidate genes on the four associated regions are involved in PI3K pathway that is known to be required by many bacteria for efficient entry into the host.

Conclusion

The GWAS revealed four QTLs associated with columnaris resistance in catfish. Strikingly, the candidate genes may be arranged as functional hubs; the candidate genes within the associated QTLs on linkage groups 7 and 12 are not only co-localized, but also functionally related, with many of them being involved in the PI3K signal transduction pathway, suggesting its importance for columnaris resistance.  相似文献   

20.
Preharvest sprouting (PHS) is a major constraint to white wheat production. Previously, we mapped quantitative trait loci (QTL) for PHS resistance in white wheat by using a recombinant inbred line (RIL) population derived from the cross Rio Blanco/NW97S186. One QTL, QPhs.pseru-3A, showed a major effect on PHS resistance, and three simple sequence repeat (SSR) markers were mapped in the QTL region. To determine the flanking markers for the QTL and narrow down the QTL to a smaller chromosome region, we developed a new fine mapping population of 1,874 secondary segregating F2 plants by selfing an F6 RIL (RIL25) that was heterozygous in the three SSR marker loci. Segregation of PHS resistance in the population fitted monogenic inheritance. An additive effect of the QTL played a major role on PHS resistance, but a dominant effect was also observed. Fifty-six recombinants among the three SSR markers were identified in the population and selfed to produce homozygous recombinants or QTL near-isogenic lines (NIL). PHS evaluation of the recombinants delineated the QTL in the region close to Xbarc57 flanked by Xbarc321 and Xbarc12. To saturate the QTL region, 11 amplified fragment length polymorphism (AFLP) markers were mapped in the QTL region with 7 AFLP co-segregated with Xbarc57 by using the NIL population. Dissection of the QTL as a Mendelian factor and saturation of the QTL region with additional markers created a solid foundation for positional cloning of the major QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号