首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anatomical injury of the leaves of the invasive species, Cirsium arvense (L.) Scop., caused by the eriophyid mite Aceria anthocoptes (Nal.), which is the only eriophyid mite that has been recorded on C. arvense worldwide, is described. The injury induced by the mite feeding on the leaves of C. arvense results in visible russeting and bronzing of the leaves. Other conspicuous deformations are folding and distortion of the leaf blade and curling of leaf edge, as well as gradual drying of leaves. The anatomical injury of the mature leaves of field-collected plants was limited to the epidermis of the lower leaf surface. However, on young leaves of experimentally infested plants, rust mite injuries extend to epidermal cells on both leaf surfaces and to those of deeper mesophyll layers. On these leaves, lesions on the lower leaf surface even affected the phloem of the vascular bundles. Leaf damage induced by A. anthocoptes is discussed with regard to the mite’s potential as a biological control agent of C. arvense.  相似文献   

2.
The behavioural response of the predatory mite Phytoseiulus persimilis to volatiles from several host plants of its prey, spider mites in the genus Tetranychus, was investigated in a Y-tube olfactometer. A positive response to volatiles from tomato leaves and Lima bean leaves was recorded, whereas no response was observed to volatiles from cucumber leaves, or leaves of Solanum luteum and Solanum dulcamara.Different results were obtained for predators that differed in rearing history. Predators that were reared on spider mites (Tetranychus urticae) on Lima bean leaves did respond to volatiles from Lima bean leaves, while predators that had been reared on the same spider mite species but with cucumber as host plant did not respond to Lima bean leaf volatiles. This effect is compared with the effect of rearing history on the response of P. persimilis to volatile allelochemicals of prey-infested plant leaves.  相似文献   

3.
We studied the induced response of tomato plants to the green strain and the red strain of the spider mite Tetranychus urticae. We focused on the olfactory response of the predatory mite Phytoseiulus persimilis to volatiles from T. urticae-infested tomato leaves in a Y-tube olfactometer. Tomato leaves attracted the predatory mites when slightly infested with the red strain, or moderately or heavily infested with the green strain. In contrast, neither leaves that were slightly infested with green-strain mites, nor leaves that were moderately or heavily infested with the red strain attracted the predators. We discuss the specific defensive responses of tomato plants to each of the two strains.  相似文献   

4.
Extensive sampling of strawberry plants in everbearing and June-bearing strawberry plantations and on potted plants showed that different species of mites were spatially separated. Of the two phytophagous species recorded, Tetranychus urticae was most abundant on old leaves and Phytonemus pallidus on folded leaves and flower/fruit clusters. Predatory phytoseiid mites were found on all plant parts but different species were spatially separated; Neoseiulus cucumeris and N. aurescens were found mostly on folded leaves and clusters, and N. californicus and Phytoseiulus persimilis on old and medium aged leaves. No Typhlodromus pyri were found in the field plantations. These patterns of distribution did not change over sampling dates in summer and early autumn. An understanding of this within-plant zonation of mite species is important when studying predator–prey interactions and when designing sampling strategies for strawberry. A programme to sample the entire mite system on strawberry should be stratified to include all the above mentioned parts of the plant. Different sampling protocols, as appropriate, are required for sampling different pest species and their associated predators.  相似文献   

5.
Under attack by herbivores, plants produce a blend of “herbivore-induced plant volatiles (HIPV)” that help natural enemies of herbivores locating their prey, thereby helping plants to reduce damage from herbivory. The amount of HIPV emitted by plants increases with herbivore density and is positively correlated with the intensity of the olfactory response of natural enemies. In this study, we determined the effects of density or within-plant distribution of the herbivorous mite Mononychellus tanajoa on movement of the predatory mite Typhlodromalus aripo out of apices of cassava plants. Proportions of T. aripo that migrated out of apex, and distances traveled were significantly higher when M. tanajoa was further away from the apex—i.e. on middle or bottom leaves of cassava plants—than when present on top leaves, or absent from the plant. This supports previous field observations that T. aripo is not a sit-and-wait predator but uses HIPV to search and locate its prey within cassava plant.  相似文献   

6.
Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman–Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.  相似文献   

7.
The predatory mite Neoseiulus cucumeris is used for biological control of phytophagous mites and thrips on greenhouse cucumber and sweet pepper. In a previous study, N. cucumeris provided effective control of broad mite but was only rarely found on the sampled leaves, raising questions about the factors affecting N. cucumeris distribution. To determine the distribution of N. cucumeris, leaves of pepper plants were sampled three times per day: just after sunrise, at noon and just before sunset for two years and throughout a 24 h period in one year. The presence of other mites and insects was recorded. Biotic (pollen) and abiotic (temperature, humidity) factors were monitored from the three plant levels. The effect of direct and indirect sunlight on the mites was assessed. N. cucumeris was found primarily in flowers; however, the mite’s distribution was affected by other predators (intraguild predation); in the presence of the predatory bug Orius laevigatus virtually no mites occurred in the flowers. Whereas temperature and humidity varied from the top to the lower level of the plants, apparently neither these factors nor the presence of pollen outside the flowers influenced mite distribution. N. cucumeris was found to be negatively phototropic; therefore N. cucumeris were pre-conditioned to light by rearing under light conditions for 4 months before being released. The light-reared mites were initially more numerous during the noon sampling period, however, rearing conditions caused only a temporary and non-significant change in distribution.  相似文献   

8.
The zonal geranium (Pelargonium xhortorum) possesses tall glandular trichomes that secrete anacardic acids, a viscous, sticky exudate which has been suggested as the primary mechanism in two-spotted spider mite (Tetranychus urticae Koch) resistance. A new bioassay was developed using small Plexiglas® cylinders as chambers for evaluating the resistance of geranium leaves to the two-spotted spider mite. This bioassay was easy to prepare, required only 24 hours to conduct, exhibited no problems with desiccation, condensation, or mite accountability, and yielded reproducible results. This bioassay was then used to study the regeneration of resistance of attached geranium leaves after they were made mite-susceptible by removing the excreted anacardic acids with water. Washed leaves regained full resistance after 14 days.  相似文献   

9.
The two-spotted spider mite (Tetranychus urticae Koch) is an important pest of tomato (Lycopersicon esculentum Mill.) crops in temperate regions as this spider mite has a very large capacity for population increase and causes severe tomato yield losses. There is no described tomato cultivar fully resistant to this pest, although resistant accessions have been reported within the green-fruited tomato wild species L. pennellii (Corr.) D’Arcy and L. hirsutum Humb. & Bonpl. We observed a L. pimpinellifolium (Jusl.) Mill. accession, ‘TO-937’, which seemed to be completely resistant to mite attacks and we crossed it with the susceptible L. esculentum cultivar. ‘Moneymaker’ to obtain a family of generations consisting of the two parents, the F1, the F2, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium. This family was evaluated for mite resistance in a polyethylene greenhouse using an experimental design in 60 small complete blocks distributed along 12 double rows. Each block consisted of five F2 plants in one row and one plant of each of the two parents, the F1, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium in the adjacent row. Plants at the 10–15 leaf stage were artificially infested by putting on them two pieces of French bean leaf heavily infested with T. urticae. After two months, evaluations of infestation were made by visual observation of mite nets and leaf damage. Plants that were free of signs of mite reproduction on the top half were considered as resistant, plants with silky nets only on their basal leaves, intermediate, and plants with mite reproduction on both basal and top canopies were scored as susceptible. Dominance for resistance appeared because all the ‘To-937’, BC1 to L. pimpinellifolium, and F1 plants were resistant. Not all ‘Moneymaker’ plants behaved as susceptible because 35% of plants were intermediate. In the BC1 to L. pimpinellifolium and the F2, most plants were scored as resistant, only 7 % BC1 and 3 % F2 plants were intermediate, and a single F2 plant (0.3 %) was susceptible. With these figures, resistance seemed to be controlled by either four or two genes according to whether segregation in the BC1 or in the F2, respectively, were considered. These results could in part be explained because of appearance of negative interplot interference due to the high frequency of resistant genotypes within most of the generations. Therefore, the family was evaluated again but using a different experimental design. In the new experiment, 16 ‘TO-937’, 17 ‘Moneymaker’, 17 F1, 37 BC1 to L. pimpinellifolium, 38 BC1 to L. esculentum, and 125 F2 plants were included. Each of these test plants was grown besides a susceptible ‘Moneymaker’ auxilliary plant that served to keep mite population high and homogeneous in the greenhouse. Negative interplot interference was avoided with this design and all the ‘TO-937’, F1, and BC1 to L. pimpinellifolium plants were resistant, all ‘Moneymaker’ test plants were susceptible, and 52 % BC1 to L. esculentum and 25 % F2 plants were susceptible, which fitted very well with the expected for resistance governed by a single dominant gene. The simple inheritance mode found will favour sucessful introgression of mite resistance into commercial tomatoes from the very close relative L. pimpinellifolium.  相似文献   

10.
M. Mochizuki 《BioControl》2003,48(2):207-221
To prevent the resurgence of the Kanzawa spider mite, Tetranychus kanzawai Kishida, on tea plants caused by the application of synthetic pyrethroid insecticides (SP), an SP-resistant strain of the predatory mite Amblyseius womersleyi Schicha was released onto tea bushes under SP (permethrin) application. The released predators successfully survived and may be able to suppress T. kanzawai. In the plot where A. womersleyi was released, the damage to new leaves was less severe than in the control plot and the predators remained resistant to the permethrin in the bushes. The selective use of pesticides that are harmless against natural enemies is necessary to achieve a program of integrated tea pest management. Although mortality of adult females of the tested strain in response to SP was from 6.5 to 89.3%, and mortality was more than 95% in response to several carbamate and organophosphate insecticides, usefulness of A. womersleyi as an agent of biological control was successfully demonstrated in the present study.  相似文献   

11.
We investigated the response of the specialist insect predator Oligota kashmirica benefica (Coleoptera: Staphylinidae) to volatiles from lima bean leaves infested with the spider mite Tetranychus urticae (Acari: Tetranychidae), both in a Y-tube olfactometer and in a field in Kyoto, Japan. Adult male and female predators were significantly more attracted to T. urticae-infested leaves than to clean air. Adult male and female predators were not more attracted to uninfested leaves, artificially damaged leaves, or the spider mites and their visible products when compared to clean air. In a field trap experiment, 12 adult predators were caught in three traps containing T. urticae-infested lima bean plants over 13 days, whereas no adult predators were trapped in three traps containing uninfested lima bean plants during the same period. These results showed that O. kashmirica benefica adults responded to herbivore-induced plant volatiles from T. urticae-infested lima bean leaves under both laboratory and field conditions.  相似文献   

12.
The predatory mite Neoseiulus cucumeris (Oudemans) (Acarina: Phytoseiidae) successfully controlled the broad mite Polyphagotarsonemus latus (Banks) (Acarina: Tarsonemidae) on two varieties of greenhouse-grown sweet peppers (Capsicum annuum L.). A survey of pre-plant seedlings showed that nurseries were a source of infestation for the broad mite. The predatory mites were released twice (on day 1 and 5, or 15 days later) on each plant, every second plant or every fourth plant. Broad mite populations were evaluated by sampling young leaves from the top of the plant. The effect of the broad mite on plant height, dry mass and yield was evaluated. Additionally, since N. cucumeris is known to control thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), blue sticky traps and flower sampling were used to evaluate changes in thrips populations. All three release rates of N. cucumeris significantly (P<0.05) controlled broad mite populations, but when the predatory mites were released only on every fourth plant, the overall height and yield of the plants were adversely affected by broad mites. Releasing N. cucumeris on each or every second plant was as efficacious in controlling broad mites as sulfur treatments in terms of plant height, dry mass and yield. Plants treated with sulfur, however, had significantly higher thrips populations and fruit damage.  相似文献   

13.
The eriophyid mite, Aceria salsolae de Lillo and Sobhian, is being evaluated as a prospective classical biological control agent of invasive alien tumbleweeds, including Salsola tragus, S. collina, S. paulsenii and S. australis, in North America. Previous laboratory experiments to determine the host specificity of the mite indicated that it could sometimes persist and multiply on some nontarget plants, including Bassia hyssopifolia and B. scoparia. These are both European plants whose geographic range overlaps that of the mite, but the mite has never been observed on them in the field. A field experiment was conducted in Italy to determine if the mite would infest and damage these plants under natural outdoor conditions. The results indicate that this mite does not attain significant populations on these nontarget plants nor does it significantly damage them. Salsola tragus was heavily infested by A. salsolae, and plant size was negatively correlated to the level of infestation. Although S. kali plants were also infested, their size did not appear to be affected by the mites. The other nontarget plants were not as suitable for the mite in the field as in previous laboratory experiments. We conclude that there would be no significant risk to nontarget plants as a result of using A. salsolae as a biological agent to control Salsola species in North America.  相似文献   

14.
Associations between mites and leaf domatia have been widely reported, but little is known about their consequences for either plants or mites. By excising domatia from leaves of the laureltinus, Viburnum tinus L. (Caprifoliaceae), in the garden and laboratory, we showed that domatia alter the abundance, distribution, and reproduction of potential plant mutualists. Over 4 months, leaves with domatia on six garden shrubs had 2–36 times more predatory and microbivorous mites, and more mite eggs than leaves without domatia. However, this effect varied among plants and was weaker on one shrub with few mites on its leaves. Domatia also influenced the distribution of mites on leaves. A significantly higher fraction of mites, representing all life stages, was found in vein axils of leaves with domatia than in vein axils on leaves without domatia. Single-leaf experiments in the laboratory showed that domatia enhanced reproduction by the predatory mite, Metaseiulus occidentalis, especially at low relative humidity (30–38%). When domatia were removed, oviposition was reduced significantly only at low relative humidity, suggesting that domatia provide mites with refuge from environmental extremes on the leaf surface. Moreover, the use of domatia by predatory mites may reduce the impact of some plant enemies. In two experiments where prey consumption was measured, M. occidentalis ate significantly higher percentages of the eggs of the two-spotted spider mite (Tetranychus urticae). Our results are consistent with the viewpoint that mite-domatia associations are mutualistic. By directly aiding and abetting the third trophic level, plants with leaf domatia may increase the efficiency of some predaceous and microbivorous mites in consuming plant enemies.  相似文献   

15.
The predatory mite Phytoseiulus macropilis is a potential biological control agent of the two-spotted spider mite (TSSM) Tetranychus urticae on strawberry plants. Its ability to control TSSM was recently assessed under laboratory conditions, but its ability to locate and control TSSM under greenhouse conditions has not been tested so far. We evaluated whether P. macropilis is able to control TSSM on strawberry plants and to locate strawberry plants infested with TSSM under greenhouse conditions. Additionally, we tested, in an olfactometer, whether odours play a role in prey-finding by P. macropilis. The predatory mite P. macropilis required about 20 days to achive reduction of the TSSM population on strawberry plants initially infested with 100 TSSM females per plant. TSSM-infested plants attract an average of 27.5 ± 1.0% of the predators recaptured per plant and uninfested plants attracted only 5.8 ± 1.0% per plant. The predatory mites were able to suppress TSSM populations on a single strawberry plant and were able to use odours from TSSM-infested strawberry plants to locate prey in both olfactometer and arena experiments. Hence, it is concluded that P. macropilis can locate and reduce TSSM population on strawberry plants under greenhouse conditions.  相似文献   

16.
While searching for food, predators may use volatiles associated with their prey, but also with their competitors for prey. This was tested for the case of Zetzellia mali (Ewing) (Acari: Stigmaeidae), an important predator of the hawthorn spider mite, Amphitetranychus viennensis (Zacher) (Acari: Tetranychidae), in black-cherry orchards in Baraghan, Iran. Using a Y-tube olfactometer, the response of this predatory mite was tested to odour from black-cherry leaves with a conspecific female predatory mite, either with or without a female of the hawthorn spider mite when the alternative odour came from black-cherry leaves with the hawthorn spider mite only. Female predators avoided odours from leaves with both a hawthorn spider mite and a conspecific predator, as well as leaves with a conspecific predator only. We discuss whether avoidance emerges in response to cues from the competitor/predator, the herbivore/prey or the herbivore-damaged plant.  相似文献   

17.
The use of chlorophyll fluorescence as a method for detecting and monitoring plant stress arising from Tetranychus urticae (Koch) feeding injury was investigated. The effect of mite density (1–32 mites per 1.5 cm2 of leaf) and the duration of the feeding period (1–5 days) on the chlorophyll fluorescence parameters of bean (Phaseolus vulgaris) leaves were examined. Changes in chlorophyll fluorescence parameters were dependent both on mite density and duration of feeding. Decreases in F o, the initial fluorescence and F m, the maximum fluorescence led to a decrease in the ratio of variable to maximum fluorescence, F v/F m. The decrease in F v/F m is typical of the response of many plants to a wide range of environmental stresses and indicates a reduced efficiency of photosystem II (PSII) photochemistry. T 1/2, which is proportional to the pool size of electron acceptors on the reducing side of PSII, was also reduced in response to mite-feeding injury. The leaf chlorophyll content decreased with increasing mite density and duration of feeding but did not appear to contribute to the decrease in F v/F m. Chlorophyll fluorescence is an effective method for detecting and monitoring stress in T. urticae-injured bean leaves.  相似文献   

18.
Spider mites are serious pests on many economically important plant species, because they may reduce plant productivity and, at high mite densities, overexploit and even kill the host plants. We have conducted a series of greenhouse experiments to quantify the effects of two-spotted spider mites (Tetranychus urticae) on host plants (Phaseolusvulgaris). The average amount of chlorophyll per cm2 leaf area was used as a measure of plant condition. It was shown that chlorophyll concentration decreases with plant age and intensity of spider mite feeding. Damage caused by spider mites was assessed visually, using the Leaf Damage Index (LDI) defined by, and a mathematical relationship between the visual measurements and the amount of chlorophyll/cm2 was fitted to data. The relationship may serve as a short-cut to estimate overall plant injury, expressed as the relative loss of chlorophyll/cm2 leaf area caused by spider mites (D). D takes values between 0 (no injury) and 1 (all leaves dead). A highly significant positive relationship between the instantaneous spider mite density and D was found, even though D is expected to reflect the cumulated density of mites (mite-days). A model of plant growth incorporating information about plant age and D predicts that plant area has a maximum when plant age is about 60 days, and that plant area decreases exponentially with an increase in D. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
This study examined the host-selection ability of the broad mite Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). To make long-distance-shifts from one host plant patch to another, broad mites largely depend on phoretic association with whiteflies. However, the host plants of whiteflies and broad mites are not necessarily the same. We determined the host-preference and acceptance of free-moving and phoretic broad mites using two behavioral bioassays. We used a choice test to monitor host selection by free-moving mites. In the case of phoretic mites, we compared their rate of detachment from the phoretic vector Bemisia tabaci placed on leaves taken from various host plants. The suitability of the plant was further determined by monitoring mite’s fecundity and its offspring development. We compared the mites’ responses to young and old cucumber (Cucumis sativus cv. ‘Kfir’) leaves (3rd and 8–9th leaf from the apex, respectively), and two tomato (Solanum lycopersicum cvs. ‘M82’ and ‘Moneymaker). Free-moving mites of all stages and both sexes preferred young cucumber leaves to old cucumber leaves and preferred young cucumber rather than young tomato leaves, demonstrating for the first time that broad mites are able to choose their host actively. As for phoretic mated females, although eventually most of the mites abandoned the phoretic vector, the rate of detachment from the whitefly vector was host dependent and correlated with the mites’ fitness on the particular host. In general, host preference of phoretic female mites resembled that of the free-moving female. Cues used by mites for host selection remain to be explored.  相似文献   

20.
We report the discovery of a mutualistic system encompassing prey–predator interactions. A domatium is a small space in a vein axil on the underside of leaves of woody angiosperms. Cinnamomum camphora Linn. has domatia that harbor a microphytophagous eriophyid mite (sp. 1). We previously reported that a predatory mite, Euseius sojaensis (Ehara), depends on this eriophyid mite as food. We revealed that E. sojaensis also preyed upon another eriophyid mite (sp. 2) that induces galls on leaves, and that the mean area of C. camphora leaves with galls was usually less than half that of leaves without galls. We experimentally tested the effect of E. sojaensis on galls, and confirmed that the presence of E. sojaensis reduced gall induction. Therefore, C. camphora, eriophyid mite sp. 1, and E. sojaensis comprise a mutualistic system, in spite of the prey–predator interactions among them. The conventional concept of mutualism does not apply to such prey–predator interactions, so we defined them as systematic mutualism. Here, the system consists of three trophic levels, and individuals that constitute this system benefit from the other species that constitute this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号