共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex circadian regulation of pineal melatonin and wheel-running in Syrian hamsters 总被引:5,自引:0,他引:5
J. A. Elliott L. Tamarkin 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,174(4):469-484
Circadian regulation of pineal melatonin content was studied in Syrian hamsters (Mesocricetus auratus), especially melatonin peak width and the temporal correlation to wheel-running activity. Melatonin was measured by radioimmunoassay in glands removed at different circadian times with respect to activity onset (= CT 12). Pineal melatonin peak width (h; for mean 125 pg/gland) and activity duration () were both 4–5 h longer after 12 or 27 weeks than after 5 or 6 days in continuous darkness (DD). Increased peak width was associated with a delay in the morning decline (M) of melatonin to baseline, correlated with a similar delay in wheel-running offset. In contrast, the evening rise (E) in melatonin occurred at approximately the same circadian phase regardless of the length of DD. Fifteen min light pulses produced similar phase-shifts in melatonin and activity. In a phase advance shift, M advanced at once, while E advanced only after several days of adjustment. Independent timing of shifts in the E and M components of the melatonin rhythm suggest that these events are controlled separately by at least two circadian oscillators whose mutual phase relationship determines melatonin peak width. This two-oscillator control of melatonin peak width is integral to the circadian mechanism of hamster photoperiodic time measurement.Abbreviations CT
circadian time
- DD
continuous dark
- L: D
light: dark cycle
- PMEL
pineal melatonin
- PRC
phase response curve
- RIA
radioimmunoassay; , duration (h) of the active phase of the circadian wheel-running rhythm; , free-running period 相似文献
2.
3.
Zawilska JB Lorenc A Berezińska M Vivien-Roels B Pévet P Skene DJ 《Chronobiology international》2006,23(1-2):341-350
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey. 相似文献
4.
Hayashi Y Sanada K Hirota T Shimizu F Fukada Y 《The Journal of biological chemistry》2003,278(27):25166-25171
Extracellular signal-regulated kinase (ERK) and p38 are members of the mitogen-activated protein kinase (MAPK) family, and in some cases these kinases serve for closely related cellular functions within a cell. In a wide range of animal clock structures, ERK plays an important role in the circadian time-keeping mechanism. Here we found that immunoreactivity to p38 protein was uniformly distributed among cells in the chick pineal gland. On the other hand, a constant level of activated p38 was detected over the day, predominantly in the follicular and parafollicular pinealocytes that are potential circadian clock-containing cells. Chronic application of SB203580, a selective and reversible inhibitor of p38, to the cultured chick pineal cells markedly lengthened the period of the circadian rhythm of the melatonin release (up to 28.7 h). Noticeably, despite no significant temporal change of activated p38 level, a 4-h pulse treatment with SB203580 delayed the phase of the rhythm only when delivered during the subjective day. These results indicate a time-of-day-specific role of continuously activated p38 in the period length regulation of the chick pineal clock and suggest temporally separated regulation of the clock by two MAPKs, nighttime-activated ERK and daytime-working p38. 相似文献
5.
Vincent M. Cassone Angela M. Forsyth Gay Lynn Woodlee 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(2):187-192
Summary While the avian pineal gland contains circadian oscillators and photoreceptors capable of producing circadian rhythms of the hormone melatonin, it is extensively innervated by post-ganglionic fibers of the superior cervical ganglia which release norepinephrine (NE) rhythmically. Norepinephrine turnover is higher during subjective day than during subjective night. In mammals, this rhythmic input, which is higher in subjective night than subjective day, derives from the hypothalamic suprachiasmatic nuclei (SCN) and is essential for rhythmic melatonin production. The present study was designed to determine whether one of two candidates for the avian homologue of the mammalian SCN is necessary for rhythmic NE turnover in the chick pineal gland. Either electrolytic lesions or sham lesions were delivered to the periventricular preoptic nuclei (PPN) or to the visual suprachiasmatic nucleus (vSCN). After recovery, the rates of decline in [NE] were determined following pretreatment with -methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, at mid-subjective day or at mid-subjective night. Birds receiving sham surgeries in either PPN or vSCN and birds receiving lesions of the PPN exhibited rhythmicity in NE turnover. No rhythm of NE turnover could be determined in birds with ablated vSCN.Abbreviations
AMPT
-methyl-p-tyrosine
-
DS
supraoptic decussation
-
EBZ
ear bar zero (see Methods)
-
GLv
ventral lateral geniculate body
-
NE
norepinephrine
-
PPN
periventricular preoptic nuclei
-
RH
retinohypothalamic projection
-
SCN
suprachiasmatic nuclei
-
vSCN
visual suprachiasmatic nucleus 相似文献
6.
Melatonin is secreted from the pineal gland in a circadian manner. It is well established that the synthesis of melatonin shows a diurnal rhythm reflecting a daily change in serotonin N-acetyltransferase (NAT) activity, and the overall secretion of melatonin requires a cellular release process, which is poorly understood. To investigate the possible involvement of Golgi-derived vesicles in the release, we examined the effect of brefeldin A (BFA), a reversible inhibitor of Golgi-mediated secretion, on melatonin secretion of cultured chick pineal cells. We show here that treatment with BFA completely disassembles the Golgi apparatus and reduces melatonin secretion. In more detailed time course experiments, however, the inhibition of melatonin secretion is only observed after the removal of BFA in parallel with the reassembly of the Golgi apparatus. This inhibition of melatonin secretion is not accompanied by accumulation of melatonin in the cells. These observations indicate that chick pineal melatonin is released independently of the Golgi-derived vesicles, and suggest inhibition of melatonin synthesis after the removal of BFA. By measuring the activities and mRNA levels of melatonin-synthesizing enzymes, we found that the removal of BFA specifically inhibits NAT activity at the protein level. On the other hand, BFA causes no detectable phase-shift of the chick pineal oscillator regulating the circadian rhythm of melatonin secretion. The results presented here suggest that the Golgi-mediated vesicular transport is involved in neither the melatonin release nor the time-keeping mechanism of the circadian oscillator, but rather contributes to the regulation of NAT activity. 相似文献
7.
Nikaido Y Ueda S Takemura A 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2009,152(1):77-82
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland. 相似文献
8.
Jerry Vriend 《Life sciences》1981,29(19):1929-1936
Studies of thyroid physiology in rats and hamsters support the view that the pineal gland has an anti-thyrotropic action. While chronic exposure of hamsters to short photoperiod, darkness, or blindness results in a depression of plasma thyroxin and plasma TSH, removal of the pineal gland, which synthesizes melatonin, prevents these effects. Melatonin administration, in the form of daily injections given late in the photoperiod, also results in inhibition of plasma thyroxin and plasma TSH. These anti-thyrotropic effects are similar to the anti-gonadotropic effects of melatonin. The results of a variety of experiments are consistent with the view that melatonin acts on a neuroendocrine control mechanism influencing synthesis or release of hypothalamic thyrotropin releasing hormone (TRH). 相似文献
9.
Reiter RJ Rosales-Corral S Coto-Montes A Boga JA Tan DX Davis JM Konturek PC Konturek SJ Brzozowski T 《Journal of physiology and pharmacology》2011,62(3):269-274
The current scientific literature is replete with investigations providing information on the molecular mechanisms governing the regulation of circadian rhythms by neurons in the suprachiasmatic nucleus (SCN), the master circadian generator. Virtually every function in an organism changes in a highly regular manner during every 24-hour period. These rhythms are believed to be a consequence of the SCN, via neural and humoral means, regulating the intrinsic clocks that perhaps all cells in organisms possess. These rhythms optimize the functions of cells and thereby prevent or lower the incidence of pathologies. Since these cyclic events are essential for improved cellular physiology, it is imperative that the SCN provide the peripheral cellular oscillators with the appropriate time cues. Inasmuch as the 24-hour light:dark cycle is a primary input to the central circadian clock, it is obvious that disturbances in the photoperiodic environment, e.g., light exposure at night, would cause disruption in the function of the SCN which would then pass this inappropriate information to cells in the periphery. One circadian rhythm that transfers time of day information to the organism is the melatonin cycle which is always at low levels in the blood during the day and at high levels during darkness. With light exposure at night the amount of melatonin produced is compromised and this important rhythm is disturbed. Another important source of melatonin is the gastrointestinal tract (GIT) that also influences the circulating melatonin is the generation of this hormone by the entero-endocrine (EE) cells in the gut following ingestion of tryptophan-containing meal. The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract. 相似文献
10.
Summary The production of melatonin has been studied using organ cultures of pineal glands incubated with methionine-methyl-3H. Melatonin-O-methyl-3H was extracted from cultured pineal glands and incubation media, and the activity of N-acetyltransferase was measured. This
is the first of two enzymes necessary for the conversion of serotonin to melatonin in the pineal. The treatment of pineal
glands with norepinephrine or dibutyryl cyclic AMP increased the release of melatonin-O-methyl-3H into the incubation media and the concentration of melatonin-O-methyl-3H in the glands. These treatments also resulted in the stimulation of N-acetyltransferase, as compared to untreated glands.
The transduction of neural information to biochemical, signals which regulate the melatonin pathway appears to involve the
release of norepinephrine, which stimulates N-acetyltransferase activity through an adenyl cyclase-cyclic AMP mechanism, as
evidenced by these and other studies discussed.
In the present study the effects of harmine were studied. This hallucinogen is known to inhibit monoamine oxidase and stimulate
melatonin production. Harmine was observed to stimulate N-acetyltransferase. This observation raises the possibility that
an important action of this psychotropic drug may be on mechanisms which convert neural activity into biochemical events. 相似文献
11.
Gonadal state, pineal melatonin rhythms, and locomotor activity rhythms were examined in juvenile male Djungarian hamsters exposed to non-24-hr light cycles ("T-cycles") or to full photoperiods. At the end of 1 month, hamsters exposed to a 1-hr pulse of light every 24.33 hr (T 24.33) exhibited small testes, whereas those receiving the same amount of light every 24.78 hr (T 24.78) displayed stimulated gonads, ten-fold larger in size. Accompanying the nonstimulatory effect of the T 24.33 cycle were nocturnal peaks in both pineal melatonin content and serum melatonin concentration which were longer by approximately 4 hr than those observed on the photostimulatory T 24.78 cycle. Exposure to an intermediate-length T-cycle (T 24.53) resulted in a mixed gonadal response and in pineal and serum melatonin peaks of intermediate duration. Wheel-running activity was entrained to the T-cycles such that light was present only near the beginning of the subjective night, its phase (relative to activity onset) differing only slightly among T-cycle groups. Hence the durational differences observed in the melatonin peaks were apparently not due to the acute suppressive or phase-advancing effects of morning light on melatonin biosynthesis, but were rather the result of differences in the endogenous control of pineal activity by the circadian pacemaker system. While no strong correlation was detected between gonadal state and the phase of locomotor activity onset relative to the light pulse, a significant correlation was observed between gonadal state and the duration of daily locomotor activity (alpha). These data were compared to similar measures obtained from hamsters exposed to long-versus short-day full photoperiods (LD 16:8 vs. LD 10:14). In summary, the results of this study indicate involvement of the circadian pacemaker system of Djungarian hamsters in the control of pineal melatonin synthesis and secretion, and in photoperiodic time measurement. Furthermore, these data strengthen the hypothesis that it is the duration of nocturnal pineal melatonin secretion that is the critical feature of this neuroendocrine gland's photoperiodic signal. 相似文献
12.
A. F. Sigüenza J. M. Recio M. Sanchez M. T. Agapito 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1988,158(3):381-386
Summary The serum melatonin (MT) levels in laying hens (Gallus domesticus) subjected to different light/dark (L/D) cycles have been measured. In order to study the levels of circulating MT in blood it was necessary to establish a specific and very sensitive radioimmunoassay (RIA). Our MT-RIA was developed after raising anti-MT antibodies in Rabbits. The RIA was performed by using3H-MT as tracer. The standard curve covered the range of 0.022–0.345 pmol/vial and theK
D
value for MT was estimated at 1.37×1010 l/mol. The antiserum specificity has been analysed; none of the common MT analogues showed cross-reactivity strong enough to interfere with MT measurement. The intra- and inter-assay variability for serum samples were 7.2 and 15.3%, respectively.The L/D experiment for 12L/12D, 16L/8D and 8L/16D cycles showed a typical nighttime rise in serum MT; the duration of that rise was directly proportional to the hours of darkness. Continuous light eliminated the serum MT rhythmicity. However, a rhythmical secretion of serum MT was present under continuous darkness for almost two weeks. Our results support the hypothesis of the presence of an endogenous regulation of the pineal MT secretion in laying hens.Abbreviations
MT
melatonin
-
NAT
N-acetyltransferase
-
PBS
phosphate buffered saline 相似文献
13.
Seasonal variations of environmental factors are translated into annual fluctuations in synthesis and release of melatonin, which in turn acts as a neuroendocrine messenger for the synchronization of annual functions. So far, most studies performed to understand the regulation of melatonin synthesis have used the non seasonal laboratory rat. It was demonstrated that nocturnal melatonin synthesis depends on alpha- and beta-adrenergic activation of the enzyme arylalkylamine N-acetyltransferase (AA-NAT). In this study, we investigated the mechanisms of melatonin synthesis in the Siberian hamster, a seasonal species with marked photoperiodic variation in melatonin peak duration and amplitude. A beta-adrenergic receptor agonist alone markedly stimulated AA-NAT activity and melatonin synthesis and release. An alpha-adrenergic receptor agonist, while having no effect per se, potentiated the beta-adrenergic stimulation of AA-NAT activity both in vitro and in vivo. Strikingly, the potentiation of AA-NAT activity did not result in a potentiation of melatonin synthesis, suggesting that the rate of melatonin production is limited downstream in the metabolic pathway, most probably at the level of hydroxyindole-O-methyltransferase (HIOMT). HIOMT presented a constitutively high activity that was not acutely (within hours) stimulated by beta-adrenergic agonist, but was rather up-regulated by chronic application of the agonist. This long-term beta-adrenergic regulation may explain the reported large photoperiodic variation of HIOMT activity that drives the photoperiodic variation in melatonin peak. 相似文献
14.
Auguste Foà Michael Menaker 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1988,164(1):25-30
Summary Melatonin levels in the plasma of homing pigeons were measured by radioimmunoassay. In a 1212 LD cycle a robust daily rhythm of plasma melatonin was found in intact birds. This rhythm is significantly reduced in amplitude after pinealectomy, and disappears completely after the pinealectomized animals have been bilaterally enucleated. The results indicate that in the pigeon 70% of the nighttime peak of blood-borne melatonin comes from the pineal gland, while 17% comes from the retina. In addition, there is a relatively large amount (13%) of non-rhythmic melatonin of unidentified origin. The melatonin rhythm appears to be circadian in nature, since melatonin levels begin to fall before lights-on in LD, and rhythmicity persists in intact and pinealectomized birds for at least two cycles in DD. In conjunction with earlier studies, the present results are consistent with the hypothesis that melatonin serves as mediator of circadian information in the pigeon. 相似文献
15.
16.
35Cl nuclear magnetic resonance longitudinal and transverse relaxation times were employed to study anion binding to rabbit muscle lactate dehydrogenase. The correlation time, obtained from a comparison of the two relaxation times, shows that coenzyme has a marked retarding effect on the anion mobility at the binding site. The quadrupole coupling constant is estimated from the magnitude of the relaxation rate change on oxamate addition. 相似文献
17.
《Life sciences》1994,54(26):PL497-PL502
The perifusion of rat pineal glands removed at different times of the light-dark cycle showed a greater β adrenergic-stimulated production of melatonin in glands obtained at the beginning of either the light or the dark stage. The effect of isoproterenol was found dependent upon its enantiomeric forms (−, ±, +). The relative order of potency was (−) > (±) > (+) enantiomer. These results show that the response of pineal β-adrenergic receptors to isoproterenol is stereospecific and circadian stage dependent. 相似文献
18.
B D Goldman 《Steroids》1991,56(5):218-225
The major function of the mammalian pineal gland appears to be its central role in photoperiodism. The pineal hormone, melatonin, is synthesized and secreted primarily at night, under the control of a circadian oscillator that is entrained to the light-dark cycle. Both the circadian phase and the duration of the nocturnal peak of melatonin secretion are established primarily by interactions between the endogenous circadian oscillator and the daily photic cycle. The duration of the melatonin peak varies inversely with day length, and this relationship between day length and the duration of each circadian melatonin peak appears to be an integral part of the photoperiodic mechanism. When pinealectomized animals are given daily melatonin infusions of long duration, they exhibit physiologic responses that normally are observed during exposure to short day photoperiods; when administered short-duration melatonin infusions, the animals display long photoperiod-type responses. In addition to the importance of the duration of each melatonin peak, certain other parameters appear to be significant. If a long-duration infusion of melatonin is interrupted by a period of 2 hours or more without melatonin (i.e., to produce two short duration infusions), the responses are those typical for long day-exposed animals. Thus, to elicit short day-type responses, each long-duration melatonin peak must be relatively continuous; responses are not determined simply by the total time of exposure to melatonin in each circadian cycle. Also, long-duration melatonin peaks may not be effective to elicit photoperiod-type responses unless they are present at frequencies of nearly once every 24 hours or more. 相似文献
19.
20.
Melatonin modulates many important functions within the eye by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylate cyclase. In the mouse, Melatonin Receptors type 1 (MT(1)) mRNAs have been localized to photoreceptors, inner retinal neurons, and ganglion cells, thus suggesting that MT(1) receptors may play an important role in retinal physiology. Indeed, we have recently reported that absence of the MT(1) receptors has a dramatic effect on the regulation of the daily rhythm in visual processing, and on retinal cell viability during aging. We have also shown that removal of MT(1) receptors leads to a small (3-4 mmHg) increase in the level of the intraocular pressure during the night and to a significant loss (25-30%) in the number of cells within the retinal ganglion cell layer during aging. In the present study we investigated the cellular distribution in the C3H/f(+/+) mouse retina of MT(1) receptors using a newly developed MT(1) receptor antibody, and then we determined the role that MT(1) signaling plays in the circadian regulation of the mouse electroretinogram, and in the retinal dopaminergic system. Our data indicate that MT(1) receptor immunoreactivity is present in many retinal cell types, and in particular, on rod and cone photoreceptors and on intrinsically photosensitive ganglion cells (ipRGCs). MT(1) signaling is necessary for the circadian rhythm in the photopic ERG, but not for the circadian rhythm in the retinal dopaminergic system. Finally our data suggest that the circadian regulation of dopamine turnover does not drive the photopic ERG rhythm. 相似文献